GAMMA

Graphics Documentation

I&

Author: Scott A. Smith
Date: May 22, 1998

~No opb~wWwNPRE

Graphics Chapters

Lo 1 Tox o R 6
GNUPIOt QULPUL ..t 7
FrameMaker OULPULoooiieriir et et 24
YN I I = L 66
T 1 Gl L RSP 73
NIMRI /O oottt re e 106
NIMRIFIE ..o e e 112

GAMMA Table of Contents i
Graphics & /0
I 1 011 o (¥ T 1 (o [OOSR 6
2 GnUPlot OQULPULoeeeeeeeeee e 7
2.3 Index of Figures & Tablesccccooveeiiiiiie e 7
2.4 ROULINES ..ottt ettt e st e e are e s te e e et e e e ba e e snraeeenreeeans 8
24.1 GP _AD e aa e aaeeeareeenns 8
24.2]t 1D o o SR 11
24.3 P XY ettt bt e et b e araeereenrenans 13
244 €] oo 1 (o L1 [S 15
245 GP_SACK ..o e 17
2.5 Routines for Interactive Plotting Using Gnuplotcccccceeveeeieennen. 19
251 GP_IDPIO oot ee e seese e e s esese e e s e s ee e s s en e eseenenens 19
2.6 Additional EXaMPIESccceeviiiiecee e 20
26.1 o] =T I o [0S 20
2.7 Additional HINtScoii 23
2.7.1 GNUPlot CoNtOUr PlOLS ... e 23
2.7.2 (€010 o] o S = ox Qo £ T 23
3 FrameMaker OULPULcccovieeiiiiir e 24
3.1 FrameMaKer OVEN'VIEWcoocuvie it e 25
3.2 Index of GAMMA'’s FrameMaker FUNCtionscccooeevvviiieeeivieneeen, 26
3.3 Index of Figures & TabIesccoiviiiiiiiii i 26
3.4 FrameMaker FUNCHIONScouiiiiiiii e 27
34.1 e Y 5 SR 27
3.4.2 L AV 1 T o SRR 29
34.3 e T4V [| OSSP 31
344 Y 1 0 | =0 SR 33
3.45 Y S o 11 34
3.4.6 [Y I 0T | o OSSR 37
3.4.7 L Y S = o PSSRSO 41
34.8 [S o = £ 46
3.5 Routines for Matrix OUutput in FIMoooiiiiiiiii e 54
351 AV = D PSP 54
352 FIM IMIBE PO ettt e e eee et seeseesseeseeseeeereneeneneeenens 56
3.6 Mathematical Details & Code SPeCIfiCSccevvviiiiiiiiiiiiieeiiiiiieeeeeeiean, 58
3.6.1 FrameMaker Contour PIOLS ooviiiiecee e 58
4 MATLAB O s 66

May 22, 1998

GAMMA Table of Contents iv
Graphics & /0

45 ROULINES .ottt e aeeeeeeees 67
45.1 VLA T L AB et e et e e e e e e e e et e e e e eeeeeeeeaneeeenannneeenaans 67
4.6 DS ol 1] 1o o SRS 70
46.1 MATLAB “MAT” FIle SIUCLUIE oeeeeee e 70
46.2 MATLAB “MAT” File Header StruCIUIre ooveieee e 70
4.6.3 MATLAB “MAT” File Data StrUCLUIE ..o 71
D R EIX IO e et 73
55 ROULINES .ottt e aeeeeeeees 75
55.1 [[TSR 5. 7
5.5.2 FEIX LD e aaaab—————————s 81
5.5.3 FRIX 2D ettt e e e e e e e e e e e e e e e e e e —————————s 82
554 = D 1 =T= T L= PRSPPI 84
555 =] o [o= PR 85
5.5.6 FRIIX _MAL . r e aaan 90
5.5.7 = D £ = LA I PO UPPTTPP 90
5.5.8 FeliX_mat Neader ... 91
5.6 D15 o 1] 1o o SRR 92
5.6.1 Felix “.dat” FIle StTUCTUIE ..ovieeeee e 92
56.2 FeliX “.dat” Data StrUCTUIE ..eeie et eeans 94
5.6.3 Felix “.mat” File StrUCIUIE ..o e 94
5.6.4 Felix “.mat” FIle HEAUEGT ... e 96
5.6.5 Felix “.mat’ Data StrUCIUIE ..oeieee e 101
O NMRI IO et ettt e e e 106
6.1 OV IV OW et e e e e e et e e e e e e e e e e e et e aaeeeeeeeeanaaeeeeeeeeeenaaeeeeees 106
6.2 Avalable NMRI FUNCLIONSooooeeeeeeeeeeeeeeeeeeeee e 106
6.3 ROULINES ...t e e e e e e e e e e e e e e eens 106
6.3.1 NIV R e e 106
6.3.2 NIMRI_ID ittt e e e e e e e e e e e e e e e e e eeeeeeeas 108
6.3.3 NIMRI 2D et e aaaaas 108
6.3.4 NMRI_NEAUEKniiieeeie e e e e e e e e e et eeeaaens 109
6.4 DS ol] 1o o TSR 110
T NMRIFI G ettt eeee e e e e e e e e aee 112
7.1 OVEIVIBW et e aaens 112
7.2 Avalable NMRIFIEFUNCLIONSoooeeeeeeeeeeeeeeeeeee e 112
7.3 NMRIiFile Figuresand Tablesccccvviiieiniinnieceee e 112
7.4 ROULINES ..t e e e e e e e e e e e e e e e e 113

May 22, 1998

GAMMA Table of Contents v
Graphics & /0

741 NMRIFIE e s b s be e s sabe e s sareas 113
7.4.2 (02 101 113
7.4.3 1T (=R 114
74.4 (== o RO 115
745 S R = 11 (< SRR 116
7.4.6 (520 = = 1 01= (= G 116
7.4.7 WHTE NEAOEY ... e 117
7.4.8 FEA0 NEATEY ... s e e ae s 117
7.4.9 oL gL = [RS 118
7.4.10 (01T 118
7.4.11 (o] S 119
7412 S TR 119
7.4.13 10 | R 120
7.4.14 ettt ee e eee i ereeehereiebesesieesseesesnessssseseseessssessestesiestessisresseseesierreeiorereisreneinres 120
7.5 Class NMRIFi1@ DESCIIPLIONc.ceeiveeiieeieeiee et see e 122
7.5.1 g 100 0o (o U 122
7.5.2 NMRIFIHE SITUCIUIE ettt ebre e 122
7.5.3 NMRI FIlE SIIUCIUIE e 123
754 NMRI HEAAEr SITUCIUIE oottt 124
755 NMRI Dal@SITUCLUME ...ttt et e e e s s ebae e s s bre e e e 125
7.5.6 GAMMA Treatment of NMRI FIlES ..ovveieeeeeeee e 125

May 22, 1998

GAMMA Introduction 6
Graphics and I/0

1 Introduction

This document discusses the ways in which GAMMA can be used to both input and output datain
formats suitable for processing and/or the production of graphical plots. Actual plotting isinevita-
bly done using OTHER software. Thus, GAMMA only serves as a hub which manipulates data.
There are three data typesin GAMMA which are often used to contain information that isto be
displayed graphically. These are row vectors, matrices, and coordinate vectors.

GAMMA Supported 1/0

\ M atlab
FrameM aker —~a——— el
(FTNMR)
: / \ Bruker
NMRi UXNMR

Figure 19-1 : Some of the programs with which GAMMA can easily interact. There are other
prgrams that also have been used with GAMMA, those that come to mind at the moment are Sig-
maPlot, Deltagraph and XMGR. These take ASCII input and need no special interface.

Scott Smith May 22, 1998

GAMMA Gnuplot Output 7
Graphics & 1/0 Index of Figures & Tables 2.3

2 Gnuplot Output

2.1 Overview

Gnuplot is a plotting package which runs on Unix systems, PCs and Macs. It's price (free) and ver-
satility make it a good choice for use in visualization of data. GAMMA's Gnuplot routines are pro-
vided to allow the output of vector, matrix, and coordinate vector data into ASCII files suitable for
plotting in Gnuplot. Aside from being able to see your simulation result plotted on virtually every
kind of computer you are using, Gnuplot also allows one to intédactive GAMMA programs

that plot to the screen. Furthermore, Gnuplot can output plots in many different formats and to
many different types of devices. More information regarding the software can be fautyut /At
www.cs.dartmouth.edu/gnuplot_info.html.

2.2 Available Gnuplot Functions

Functions To Make Plot Files For Gnuplot Use

GP_1D - 1-Dimensional Plot page 8
GP_1Dm - Multiple 1-Dimensional Plots page 11
GP_xy - Parametric Plot page 13
GP_contour - Contour Plot page 15
GP_stack - Stack Plot page 17
Functions To Make Interactive GAMMA Plots Using Gnuplot

GP_1Dplot - 1-Dimensional Plot Interactively page 19
GP_1Dm - Multiple 1-Dimensional Plots page 11

2.3 Index of Figures& Tables

Figure 4-1. Gnuplot Funcion GP_1D Example page 10
Figure 4-2: Gnuplot Function GP_1Dm Example page 12
Figure 4-3: Gnuplot Function GP_xy Example page 14
Figure 4-4. Gnuplot Function GP_contour Example page 16
Figure 4-5: Gnuplot Function GP_stack Example page 18
Figure 4-6: Gnuplot 3D Spherical Plot Example page 22

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 8
Graphics & 1/0 Index of Figures & Tables 2.3

2.4 Routines

24.1 GP_1D

Usage:

#include <gnuplot.h>
void GP_1D (const char* filename, const row_vector& vx, int ri=0,

double xmin=0, double xmax=0, double cutoff=0);
void GP_1D (ofstream& ofstr, const row_vector& vx, int ri=0,

double xmin=0, double xmax=0, double cutoff=0);

Description:

The function GP_1D writesthe information contained in the input row vector vx in ASCII format to either a
fileor afile stream. Theinteger flag ri dictates whether real (ri=0, default), imaginary (ri<0), or complex val-
ues from vx will be output. If xmax or xmax & xmin are specified the horizonatal axes will be labeled, the
first point with the value of xmin and the last point with the value of xmax. For some 1D plots, pointsin the
Gnuplot output file may be skipped and hence (from smooth data) the output file size reduced. Thisis done
automatically by this GAMMA function, the value of cutoff indicative of what point variation is considered
roundoff. Note that some type of plotting do not allow for skipped points and the value of cutoff should be
left at zero. The latter form of the function is useful for successive writes of 1D spectrato the samefile.

Return Value:

Nothing. A new disk filein ASCII is produced for plotting with Gnuplot (or other plotting programs which
take ASCII). It will contain either one or two plots depending on the flag “rc”.

Example:
#include <gamma.h>
main ()
{
int npts=101; // How about this many points
row_vector data(npts); Il 1-dim. data block
double x, y; I/l Some temporary variables
for(int i=0; i<npts; i++) Il Fill up data block
{
X = double(i-50);
y = X*x*x/125000; // Cubical parabolic in imaginaries
X = x*x/2500; /I Regular parabolic into reals
data.put(complex(x,y),i); /[Put this point into the vector
}
GP_1D("real.gnu", data, 0); /I Write real pointsto an ASCII file
GP_1D("imag.gnu", data, -1); I/ Write imaginary pointsto an ASCII file
GP_1D("bides.gnu", data, 1); I/ Write complex points to anASCI| file

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 9
Graphics & 1/0 Index of Figures & Tables 2.3

}

When compiled and executed, the program makes three ASCI| files suitable for use in Gnuplot
They may be readily viewed with that program or used in any other plotting program that takes
ASCII input. The following dialog demostrates how to display these plots on the screen on aUnix
system (assuming Gnuplot is installed and the executable “gnuplot” is in the users path).

|gammal>gnuplot
GNUPLOT
unix version 3.5
patchlevel 3.50.1.17, 27 Aug 93
last modified Fri Aug 27 05:21:33 GMT 1993
Copyright(C) 1986 - 1993 Colin Kelley, Thomas Williams
Send comments and requests for help to info-gnuplot@dartmouth.edu
Send bugs, suggestions and mods to bug-gnuplot@dartmouth.edu
Terminal type set to 'x11'
gnuplot> set data style lines
gnuplot> plot "real.gnu”
gnuplot> plot "imag.gnu"
gnuplot> plot "bides.gnu"
gnuplot> quit
|gammal>

Since this documentation was created with the program FrameMaker, | can also put these plots di-
rectly into the document. For example, before the “quit” command above | can do the following

gnuplot> set terminal mif
Terminal type set to 'mif’
Options are 'colour polyline'
gnuplot> set output "real.mif"
gnuplot> plot "real.gnu”

This produces three corresponding MIF files that are shown in the next figure. Other than being
resized, they have not been altered within FrameMaker (although they could be.)

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 10
Graphics & 1/0 Index of Figures & Tables 2.3

Gnuplot Funcion GP_1D Example

1 . o 1 . o 1

real.gnu real.gnu 08
0.8 0.8 0.6
0.4
0.6 0.6 0.2
0
0.4 0.4 -0.2
-0.4
0.2 0.2 -0.6]
-0.8

20 40 o0 80 100 20 40 o0 80 100 ” o0 100 150 200 250

“bides.gnu” -

Figure 4-1 - Example program result from use of the GAMMA function “Felix”.

See Also:

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 11
Graphics & 1/0 Index of Figures & Tables 2.3

24.2 GP_1Dm

Usage:
#include <gnuplot.h>
void GP_1Dm(const String& filename, row_vector* vx, int N,
int ri=0, double xmin=0, double xmax=0, int cutoff =0);
Description:
Thefunction GP_1Dm creates an ASCI| file called filename suitable for reading and plotting with Gnuplot.
Itwill contain plot(s) of the data contained in the array of vectorsvx on the y-axis versus point number on the
x-axis. The number of vectors (in the array vx) to plot is given by the integer N. The x-axis produced will
span arange [xmin, xmax] which defaults to [0,1]. The flag'I” dictates which plot(s) are produced. For rc
= 0 (default) only the real data is plotted. For rc < 0 only the imaginary data is plotted. For rc>0, both the real
and imaginary plots are produced. For some 1D plots, points in the Gnuplot output file may be skipped and
hence (from smooth data) the output file size reduced. This is done automatically by this GAMMA function,
the value otutoff indicative of what point variation is considered roundoff. Note that some type of plotting
do not allow for skipped points and the valueatioff should be left at zero.
Return Value:
Nothing. A new disk file in ASCII is produced for plotting with Gnuplot (or other plotting programs which
take ASCII). It will contain one or more plots depending on the value of N.
Example:
#include <gamma.h>
main ()
{
inti, npts=101, /[Temp index, # points
row_vector data[3], datatmp(npts); /I Vector array, temp. vector
for(i=0; i<3; i++) data[i] = datatmp; /[Initialize vectorsin array
double x; [[Temp variable
for(i=0; i<npts; i++) I/ Fill up data blocks
{
X = double(i-npts/2); Il The “x” value
data[0].put(x*x/2500.0,i); /l The “y” value, 1st vector
data[1].put(x*x*x/12500.0,i); Il The “y” value, 2nd vector
data[2].put(x*x*x*x/312500.0,i); Il The “y” value, 3rd vector
}
GP_1Dm("plots.asc", data, 3); /I Write real points to ASCII file
cout << "\n\n"; /I Keep the screen nice
}

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 12
Graphics & 1/0 Index of Figures & Tables 2.3

Gnuplot Function GP_1Dm Example

20
"plots.asc" —

15¢

10¢

5}

o ——

51
-10

0 50 100 150 200 250 300 350

Figure 4-2 - Example program result from use of the GAMMA function “GP_1Dm".

The plot above was incorporated directly into this file using the “MIF” export type in Gn-
uplot. After the plot is displayed on the screen, the commaants minal MIF, set output
“plot.mif”, and replotwere given to have Gnuplot produce the plot in MIF format in the

file plot.mif. Thefile plot.mif wasimported to this document with the FrameM aker import
command under the File option.

See Also:

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 13

Graphics & 1/0 Index of Figures & Tables 2.3
243 GP_xy
Usage:

#include <gnuplot.h>
void GP_xy (const char* filename, const row_vector &vx);
void GP_xy (ofstream& ofstr, const row_vector &vx);

Description:
The function GP_xy creates an ASCI file “filename” in a format suitible for use in Gnuplot. Unlike function
GP_1D which assumes the data is monotonically increasing on the horizontal axis, GP_xy produces plots in

parametric fashion, i.e. trueversusy. The plot will be of the data supplied by the vector vx. It is recommend-
ed that “filename” end with “.asc” to signify an ASCII file.

Return Value:

Nothing. A new disk file is produced for use in Gnuplot.

Example:
#include <gamma.h>
main ()
{
row_vector data(360); /I Create a data block
double x,y,theta; Il Declare needed variables
for(int i=0; i<360; i++) // Loop through 360 degrees
{ Il Fill up block with Astroid
theta=i*2.0*P1/360.0; // also called a Hypercycloid of four cusps
X = cos(theta); Il x = a*[cos(theta)]** 3, herea=1
y = sin(theta); /'y = & [sin(theta)]**3, herea=1
X = X*X*X;
Y =Y*yry;
data.put(complex(x,y), 1); Il Store the data point
}
GP_xy("astroid.asc", data); // Output Gnuplot .mif plot file
GP_xyplot("asteroid.gnu", "astroid.asc"); // Interacitvely plot to screen!
}

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 14
Graphics & 1/0 Index of Figures & Tables 2.3

Gnuplot Function GP_xy Example

“astroid.asc’ —

-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 4-3 - Example program result from use of the GAMMA function “GP_xy".

The plot above was incorporated directly into this file using the “MIF” export type in Gn-
uplot. After the plot is displayed on the screen, the commaants minal MIF, set output
“plot.mif”, and replotwere given to have Gnuplot produce the plot in MIF format in the

file plot.mif. Thefile plot.mif wasimported to this document with the FrameM aker import
command under the File option.

See Also: GP_1D, GP_1Dm

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 15

Graphics & 1/0 Index of Figures & Tables 2.3
244 GP_contour
Usage:

#include <gnuplot.h>
void GP_contour(ofstream& ofstr, const row_vector& vx, double row,
int row_inc=0, double xmin=0, double xmax=0, double cutoff=0)
void GP_contour(ofstream& ofstr, matrix& mx,
int row_inc=0, double ymin=0, double ymax=0, double double xmin=0, double xmax=0)
void GP_contour(ofstream& ofstr, matrix& mx, double row,
int row_inc=0, double ymin=0, double ymax=0, double double xmin=0, double xmax=0)

Description:

The functions GP_contour is used to create contour plotsin Gnuplot MIF format.

FM_contour (const char* filename, matrix & mx, double threshold, int steps, double CL1, double CLM, int
CPN, double xsize, doubleysize) -Thefunction FM_contour createsa Gnuplot filecalled filename inthe MIF
format. The produced filewill contain acontour plot of the real data contained in the matrix mx. The contours
begin at the level set by threshold and increment by the value of CLI. The number of contoursis set by steps.
Thelevelsincrement either geometrically or linearly as set by thevalue of CLM, the default islinear. Positive
and negative contours are set by the flag CPN. For CPN=1 (default), both positive and negative contours are
produced. For CPN=0 only the positive contours are output while for CPN=-1 only the negative contours are
done. The output file contour plot will be of dimension xsize by ysize (both given in centimeters, default 10
cm).

CPN - Thisisaflagto indicate whether positive (or increasing), negative (or decreasing), or both positive and
negative contours. If CPN = 0, only contours increasing from the set threshold will be computed. If CPN = -
1 only contours decreasing from the set threshold will be computed. If CPN = 1 (default), contour will be
computed increasing from [threshold| and decreasing from -|threshold|.

Xsize, ysize - These determine the overall plot dimensions the Gnuplot output will assume. The values are
input in centimeters and are defaulted to 10 cm each. The values do nothing to the relative x to 'y scaling im-
plicit in the data matrix, thus a 256 by 512 array will be 5 x 10 cm even though xsize and ysize are both set
to 10 cm.

Return Value:

Nothing. A new disk fileis produced for incorporation into Gnuplot.

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 16
Graphics & 1/0 Index of Figures & Tables 2.3
Example:
#include <gamma.h>
main()
{
matrix mx(101,101); // Data matrix

row_vector vx1(101), vx2(101);
vx1 = sinc(101, 50, 10);
vX2 = sin_square(101, 50);
for(int i=0; i<101; i++)

for(int j=0; j<101; j++)

mx.put(vx1.get(i)* vx2.get(),i,));

String afile = "contour.asc™;
GP_contour(afile, mx);

GP_contplot("contour.gnu", afile);

}

/I Two working blocks of length 101

I/ Use provided window sinc function

/I Use provided window sin squared function
// Loop through and fill up the matrix

// Output ASCII file name
/I Write the ASCI|I file for Gnuplot
I Interactively output contour plot

Gnuplot Function GP_contour Example

"contour.asc"
0.797
0595 —
0.392
100 0.189

-0.0135

0

50

Figure 4-4 - Example program result from use of the GAMMA function “GP_stack”.

See Also: FM _stack

Copyright Scott A. Smith

May 22, 1998

GAMMA Gnuplot Output 17

Graphics & 1/0 Index of Figures & Tables 2.3
245 GP_stack
Usage:

#include <gnuplot.h>
void GP_stack(ofstream& ofstr, const& row_vector, double row,
int row_inc, double xmin, double xmax, double cutoff=0)
void GP_stack(String& filename, matrix& mx,
int row_inc=0, double ymin=0, double ymax=0, double double xmin=0, double xmax=0)
void GP_stack(ofstreamé& ofstr, matrix& mx, double row,
int row_inc, double xmin, double xmax, double cutoff=0)

Description:

Thefunction GP_stack creates an ASCII file Gnuplot file called “filename” in the MIF format. It contains a
single stack plot of dimension xsize by ysize (both given in centimeters, default 14 cm). The data is input in
the form of a matrix and the plot is of the entire matrix real. ddta values xinc and yinc, also given in cen-
timeters, are the amount to shift the next row in the horizontal and vertical directions respectively. The rows
which are to be plotted are specified by the value row_inc, e.g. a row increment of 3 causes the first, fourth,
seventh, etc., until the end of the matrix is reached.

Return Value:

Nothing. A new disk file is produced for incorporation into Gnuplot.

Example:

#include <gamma.h>

main()
{
matrix mx(101, 101); I/ Create a 101x101 matrix for data
row_vector vx(100); Il Create a 1D-data block of length 101
vx = sinc(101, 50, 10); I/ Use provided window sinc function
for(int i=0; i<101; i++) /I Loop through and fill up the matrix

for(int j=0; j<101; j++)
mx(i.,j) = vx(i) * vx(j);

String afile = "stack.asc"; I/ Output ASCII file name
GP_stack(afile, mx); /I Write the ASCI|I file for Gnuplot
}

This example generates a 101x101 matrix which is a sinc function along both axes.

The following dialog demostrates how to display these plots on the screen on a Unix system (as-
suming Gnuplot is installed and the executable “gnuplot” is in the users path).

|gammal>gnuplot
GNUPLOT

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 18
Graphics & 1/0 Index of Figures & Tables 2.3

unix version 3.5

patchlevel 3.50.1.17, 27 Aug 93

last modified Fri Aug 27 05:21:33 GMT 1993

Copyright(C) 1986 - 1993 Colin Kelley, Thomas Williams

Send comments and requests for help to info-gnuplot@dartmouth.edu
Send bugs, suggestions and mods to bug-gnupl ot@dartmouth.edu
Terminal type set to 'x11’

gnuplot> set data style lines

gnuplot> set parametric

gnuplot> splot "stack.asc"

Since this documentation was created with the program FrameMaker, | can also put these plots di-
rectly into the document. For example, before the “quit” command | can do the following

gnuplot> set terminal mif

Terminal type set to 'mif’

Options are 'colour polyline'

gnuplot> set output "stack.mif"

gnuplot> replot

gnuplot> quit
This produces a MIF files that is shown in the next figure. Other than being resized, is has not been
altered within FrameMaker (although it could be.)

Gnuplot Function GP_stack Example

Figure 4-5 - Example program result from use of the GAMMA function “GP_stack”.

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 19
Graphics & 1/0 Index of Figures & Tables 2.3

2.5 Routinesfor Interactive Plotting Using Gnuplot

251 GP_1Dplot

Usage:

#include <gnuplot.h>
void GP_1Dplot(const String& gnumacro, const String& filelD, int join = 1);
void GP_1Dplot(GPdat& G);

Description:
Thefunction GP_1Dplot can be used to produce 1D plotsto the screen whileaGAMMA program is running
using Gnuplot. Thisisin three steps. First, during the course of asimulation, an ASCI| file suitablefor usein

Gnuplot iswritten to afile. Second, an ASCII file full of Gnuplot commands to plot the ASCII datafileis
written to another file. Finally, Gnuplot is invoked and the commands executed.

Return Value:

Nothing. A new disk filein the MMF is produced for incorporation into Gnuplot.
Example:

#include “gamma.h”

FM_Matrix (“Testal.mmf”,c);

}
(6.00, 6.00)

Note that the 1,1 is set to the integer 1, the 1,2 element to 1.00 because its full
value is 1.001. The imaginary part has a value of 0.0001 and falls below threshold.
See Also: FM_Mat_Plot

Copyright Scott A. Smith May 22, 1998

GAMMA
Graphics & 1/0

Gnuplot Output
Index of Figures & Tables

20
2.3

2.6

26.1

Additional Examples

Spherical Plots

Description:

Although thereis no functionin GAMMA (yet) to support it directly, users can make 3D spherical plotswith
Gnuplot and GAMMA. In thisinstance the program should generate a coordinate vector of the 3D points.
These are subsequently projected into 2 dimensions with the coordinate vector projection function. The
GP_xy function is then used to output the projected points.

Example:

#include <gamma.h>
main (int argc, char** argv)

{
iint N = 4096;
coord vec data(N);
doublex, y, z;
double w, W = 250.0;
double Nm1 = double(N-1);
double di;
for(int i=0; i<N; i++)
{
di = double(i);
w = W*di/Nml,;
z=-1.0+ 2.0*di/Nm1;
X =sin(w);
y = cos(w);
data.put(x,y,z,i);
}
row_vector proj(N);
double TH, PH;
double fact = 180.0/P;
coord pt;
for(int I=0; I<N; I++)
{
pt = data(l);
TH = fact*pt.theta();
PH = fact* pt.phi();
proj.put(complex(PH,90-TH),I);

Copyright Scott A. Smith

/I WEl plot this many points
// Her€e's a coordinate vector
// Here are ordinates

/I Now well fill up the vector

/[Point value

/I Frequency vlaue
/I Letz=[-1,1]

I/l Takex oscillating
/I Takey oscillating
/I Store coordinate

Il For projected data

May 22, 1998

GAMMA Gnuplot Output 21

Graphics & 1/0 Index of Figures & Tables 2.3
}
GP_xy("sphere.asc”, proj); I/ 2D gnuplot of trg
cout << "\n\n"; Il Keep the screen nice
}

This plot makes a helix which spirals up the surface of asphere. The following dialog demostrates
how to display these plots on the screen on a Unix system (assuming Gnuplot isinstalled and the
executable “gnuplot” is in the users path).

|gammal>gnuplot
GNUPLOT
unix version 3.5
patchlevel 3.50.1.17, 27 Aug 93
last modified Fri Aug 27 05:21:33 GMT 1993
Copyright(C) 1986 - 1993 Colin Kelley, Thomas Williams
Send comments and requests for help to info-gnuplot@dartmouth.edu
Send bugs, suggestions and mods to bug-gnuplot@dartmouth.edu
Terminal type set to 'x11'
gnuplot> set data style line
gnuplot> set parametric
dummy variable is t for curves, u/v for surfaces
gnuplot> set angles degrees
gnuplot> set title "3D Trajectory"
gnuplot> set nokey
gnuplot> set view 80,140,.6, 2.5
gnuplot> set mapping spherical
gnuplot> set samples 32
gnuplot> set isosamples 9
gnuplot> set urange [-pi/2:pi/2]
gnuplot> set vrange [0:2*pi]
gnuplot> splot cos(u)*cos(v),cos(u)*sin(v),sin(u) with lines 3 4, 'sphere.asc' with lines 1 2
gnuplot> set terminal mif
Terminal type set to 'mif’
Options are 'colour polyline'
gnuplot> set output "x.mif"
gnuplot> replot
gnuplot> quit
The last lines produce a MIF file that is shown in the next figure. Other than being resized, is has
not been altered within FrameMaker (although it could be.)

Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 22
Graphics & 1/0 Index of Figures & Tables 2.3
Gnuplot 3D Spherical Plot Example

3D Trajectory

1-
0.5}

0 i T

-0.5
-1-
Figure 4-6 - Example program result illustrating production of 3D spherical plots.
Copyright Scott A. Smith May 22, 1998

GAMMA Gnuplot Output 23
Graphics & 1/0 Index of Figures & Tables 2.3

2.7 Additional Hints

2.7.1 Gnuplot Contour Plots

The contouring function takesa GAMMA matrix and slices through specified contours to produce
aGnuplot MIF output file. An attempt is made to group all points for each specific contour line

2.7.2 Gnuplot Stack Plots

The contouring function takesa GAMMA matrix and slices through specified contoursto produce
aGnuplot MIF output file. An attempt is made to group all points for each specific contour line

Copyright Scott A. Smith May 22, 1998

GAMMA FrameMaker Output 24
Graphics & 1/0

3 FrameMaker Output

Sections I n This Document

31 FrameMaker Overview page 25

3.2 Index of GAMMA's FrameMaker Functions page 26

3.3 Index of Figures & Tables page 26

3.4 FrameMaker Functions page 27

3.5 Routines for Matrix Output in FM page 54

3.6 Mathematical Details & Code Specifics page 58

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 25
Graphics & 1/0 FrameMaker Overview 3.1

3.1 FrameMaker Overview

The FrameMaker output routines are provided to allow the transfer of simulated plot datainto
FrameMaker compatiblefiles. Thisis highly useful for the preparation of documents which areto
contain plots of your GAMMA simulated spectra. FrameMaker has the ability to blend text, equa-

tions, and graphics. Using GAMMA's FrameMaker routines, one may quickly produce publication
guality documents, transparencies, HTML pages, etc.. that contain simulated spectra directly.

Since FrameMaker also has the ability to graphically manipulate GAMMA generated files, your
plots may be cosmetically enhanced. Because GAMMA is capable of reading other file formats, it
can serve a a conversion tool. If plot files from other programs are read into GAMMA (e.g. a matrix
from Felix), they may be re-output into FrameMaker format for use in a document. FrameMaker
can also be used just for viewing GAMMA simulated spectra on the screen.

GAMMA & FrameMaker

N

A— Y

FrameM aker

Matrix
Row Vector
Column Vector
Coordinate Vector

Figure 4-1: GAMMA output in FrameMaker. You're viewing a document produced with FrameMaker
and the plots were made with GAMMA.

Note that thisisaone directional process! Unlike other output formats supported by GAMMA
(Felix, NMRI, etc.), GAMMA cannot re-read FrameMaker files. DO NOT make the mistake of
considering your FrameMaker output files as a means of data storage from which further mathe-
matical manipulations may be performed within GAMMA.. FrameMaker filesare exclusively used
for FrameM aker.

A primary reason for GAMMA's interface to FrameMaker is that such plots are graphic objects.
That is to say, they may be manipulated graphically inside FrameMaker. Your plots can be resized,
recolored, annotated, added into other documents, made into transparencies, etc. The downside of
this is that to use these routines you must purchase FrameMaker. More information regarding the
software can be found at http://www.frame.com.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 26
Graphics & 1/0 Index of Figures & Tables 3.3
3.2 Index of GAMMA's FrameMaker Functions

FM_1D - 1-Dimensional FrameMaker Cartesian Plot in MIF Format page 27
FM_1Dm - Multiple 1D FrameMaker Cartesian Plotsin MIF Format page 29
FM_xyPlot - Parametric FrameMaker Plot in MIF Format page 31
FM_histogram - Histogram Plot in MIF Format page 33
FM_scatter - Scatter Plot in MIF Format page 34
FM_contour - 2-Dimensional Contour Plot in MIF Format page 37
FM_stack - Stack Plot in MIF Format page 41
FM_sphere - Vector(s) on asphere plot in MIF Format page 46
FM_Matrix - Matrix output in MMF format page 54
FM_Mat_Plot - Graphical depiction of amatrix in MIF page 56
3.3 Index of Figures & Tables

Figure 4-1. GAMMA Output to FrameM aker page 25
Figure 4-2: FM_1D Example Output page 28
Figure 4-3: FM_1Dm Example Output page 30
Figure 4-4: XY Plot Example page 32
Figure 4-4: Histogram Example page 33
Figure 4-4. Size Vs. Symbol in Scatter Plots page 34
Figure 4-6: FM_scatter Examplel Output page 35
Figure 4-7: FM_scatter Example 2 Output page 36
Figure 4-7: Choosing Contour Levels page 32
Figure 4-8: Multiple Contour Levels page 33
Figure4-10: FM_contour Example Output page 40
Figure4-10: FM_stack Example Output page 45
Figure4-11: Euler Rotations About aand b page 47
Figure4-12: Euler Rotations About b and g page 48
Figure4-13: FM_sphere Example 1 Output page 50
Figure4-14. FM_sphere Example 2 Output page 51
Figure4-15. FM_sphere Example 3 Output page 52
Figure4-17: Contours page 59
Figure4-18: Multiple Contours page 60
Figure 4-20: Contouring Concept page 61
Figure4-20: Contouring Theme page 62
Figure4-21: Contouring Situation page 63
Figure4-22: Contouring Situation page 64
Table 1: Eight (23) Triangle Based Contouring Situations Possible page 61
Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 27
Graphics & 1/0 FrameMaker Functions 34

3.4 FrameMaker Functions

34.1 FM_1D

Usage:

#include <FrameMaker.h>
void FM_1D (const char* filename, row_vector vx, double xsize=14,
double ysize=14, double min=0, double max=1, int rc=0);

Description:

Thefunction FM_1D creates a FrameMaker file called filename in the MIF format. It will contain plot(s) of

the data contained in the vector vx on the y-axis versus point number on the x-axis. The plot(s) will be of di-
mension xsize by ysizein centimeters (default to 14x14 cm plot). Thex-axis produced will span arange[min,

max] which defaultsto [0,1]. The flag rc dictates which plot(s) are produced. For rc = 0 (default) only the

real datais plotted. For rc < 0 only the imaginary datais plotted. For rc>0, both the real and imaginary plots

are produced. FrameMaker MIF files are typically named with a “.mif” suffix so it is recommended that all
filenames used for this function end with .mif.

Return Value:

Nothing, a new disk file in the MIF is produced for incorporation into FrameMaker. It will contain either one
or two plots depending on the flag “rc”.

Example:
#include <gamma.h>
main ()
{
row_vector vx(101); // Block for data points
double x, y; /I Working X,y ordinates
for(int i=0; i<101; i++) Il Fill up data block
{
X = double(i-50); Il Offset x (so centered)
y = X*x*x/125000; // Cubical parabolic (imag)
X = x*x/2500; // Parabolic into reals
vX.put(complex(x,y),i); // Store this point
}
FM_1D(“FM.mif”,BLK,10,5, -50, 50, 1); // Output FM.mif, both plots
}

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 28
Graphics & 1/0 FrameMaker Functions 34

FM_1D Example Output

1_ 1_
08 0.5
0.6]
0.4 OF
0.2 -0.5|
oL ' ' : ' -1 | | | |
-40 -20 0 20 40 40 -20 0 20 40

Figure 4-2 - The two plots above were contained in the file FM.mif and imported directly to
this document without further alteration. The import command within FrameMaker is
under the File option. These plots were produced from the example code.

See Also: FM_1Dm, FM_xyPlot, FM_scatter, FM _histogram

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 29
Graphics & 1/0 FrameMaker Functions 34

34.2 FM_1Dm

Usage:
#include <FrameMaker.h>
void FM_1Dm(const char* filename, int N, row_vector* vxs);
Description:
The function FM_1Dm creates a FrameMaker file called filename in MIF format. It will contain plots of the
data contained in the N vectors which are pointed to by vxs These plot(s) may be further manipulated from
within FrameMaker itself. FrameMaker MIF files are typically named with a “.mif” suffix so it is recom-
mended that all filenames used for this function end with .mif.
Return Value:
Nothing. A new disk file in the MIF is produced for incorporation into FrameMaker. It will contain either one
or two plots depending on the flag “rc”.
Example:
#include <gamma.h>
main()
{ - . . -
inti, j, N=5; // This many plots
row_vector vxg[5], vx(101); /I Blocks for data points
for(i=0; i<N; i++) vxg[i] = vx; /I Initilize the 5 blocks
double x; // Working X,y ordinates
for(i=0; i<101; i++) // Fill up data blocks
{
X = double(i-50); Il Offset x (so centered)
X = X*x/2500; // Parabolic function
for(j=0; j<N; j++)
vxg[j].put(complex(j*x),i); /] Store this point
}
FM_1Dm("FM.mif", N, vxs); [/l Output to FM.mif, N plots
}

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 30
Graphics & 1/0 FrameMaker Functions 34

FM_1Dm Example Output

0

0 0.2 0.4 0.6 0.8 1

Figure 4-3 - The two plots above were contained in the file FM.mif and imported directly to
thisdocument. | did some coloring, resizing, and abit of axisadjusting in FrameM aker.
The import command within FrameMaker isunder the File option. These plots were pro-
duced from the example code.

See Also: FM_1D, FM_xyPlot, FM_scatter, FM _histogram

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 31
Graphics & 1/0 FrameMaker Functions 34

343 FM_xyPlot

Usage:
#include <FrameMaker.h>

void FM_xyPlot (const char* filename, row_vector &vx, double xsize=14, double ysize=14);

Description:

The function FM_xyPlot creates a FrameMaker file “filename” in the MIF format. Unlike function FM_1D
which assumes the data monotonically increasing on the horizontal axis, FM_xyPlot produces plots in para-
metric fashion, i.e. trueversusy. The plot will be of the data supplied by the vector vx and the plot dimension
xsize by ysize in centimeters (default to 14x14 cm plot). It is recommended that “filename” end with “.mif”

to signify a FrameMaker MIF file. Note: block_1D can be substituted for row_vector in the function call here.

Return Value:

Nothing. A new disk file is produced for incorporation into FrameMaker.

Example:
#include <gamma.h>
main ()
{
block_1D BLK(360); /I create a data block
double x,y,theta; Il declare needed variables
for(int i=0; i<360; i++) //'loop through 360 degrees
{ /I fill up block with Astroid
theta=i*2.0*PI/360.0; /Il also called a Hypercycloid of four cusps
X = cos(theta); Il x = a*[cos(theta)|** 3, herea=1
y = sin(theta); /'y = & [sin(theta)]**3, herea=1
X = X*X*X;
Y =Y yry;
BLK(i) = complex(x,y);
}
FM_xyPlot(“astroid.mif”, BLK); /l output FrameMaker .mif plot file
}

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 3R2
Graphics & 1/0 FrameMaker Functions 34

XY Plot Example

-T 05 0 0.5 1

Figure 4-4 - The two plots above were contained in the file FM.mif and imported directly to
this document without further alteration. The import command within FrameMaker is
under the File option. These plots were produced from the example code.

See Also: FM_1D, FM_1Dm, FM_scatter, FM_histogram

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 33
Graphics & 1/0 FrameMaker Functions 34

3.4.4 FM _histogram

Usage: **** Notethisfunction worksbut isstill under construction. It may fail if thenumber of points
does not far exceed the number of bins (a factor of >100 seems0.k.)
#include <FrameMaker.h>
void FM_histogram (const char* filename, row_vector &vx, int bins = 0,
double xsize=14, double ysize=14);

Description:

The function FM_histogram creates a FrameMaker file called “filename” in the MIF format The plot will be
of the data supplied by the vector vx and the plot dimension xsize by ysize in centimeters (default to 14x14
cm plot). The number of bins is specified by the integer “bins” and should not exceed the number of points
in the input data vector. The default number is zero whereupon each point in vx is a separate bin. Currently
the data must be increasing monotonic. It is recommended that “filename” end with “.mif” to signify a
FrameMaker MIF file. Note: block_1D can be substituted for row_vector in the function call. Each bin of the
histogram may be manipulated individually within FrameMaker.

Return Value:

Nothing. A new disk file is produced for incorporation into FrameMaker.
Example:
#include <gamma.h>
main ()
{

row_vector vx(51); /I create a data block
row_vector vx1(51); /l
vx1 = Gaussian(51, 25, 3); /I fill up datawith Gaussian
for(int i=0; i<51; i++)
vX(i) = complex(i, Re(vx1(i)));
FM_histogram(“FM.mif”, vx, bins); // output FrameMaker .mif plot file

}
Histogram Example

1- _

0.8 .
0.6 | -
0.4

0.2

0 10 20 30 40 50
See Also: FM_1D, FM_1Dm, FM_xyPlot, FM_scatter

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 34
Graphics & 1/0 FrameMaker Functions 34

345 FM _scatter

Usage:

#include <FrameMaker.h>
void FM_scatter (const char* filename, row_vector &vx, int sides=0,
double PGsize=0, double xsize=14, double ysize=14);
void FM_scatter (const char* filename, row_vector &vx, char a='o’,
double xsize=14, double ysize=14);

Description:

Thefunction FM_scatter is essentially the same as the function FM_xyPlot except that the points are not con-

nected by a line, they are marked with a specified symbol. The FrameMaker MIF file “filename” is created

containing a plot of the data supplied by the vector vx. The plot dimension is xsize by ysize in centimeters

(default to 14x14 cm plot). The data is plottedaxsus y where x are the real points of the vector and y the

imaginary points.

1. FM_scatter (const char* filename, row_vector &vx, int sides=0, double PGsize=0, double xsize=14,
double ysize=14) - When the function is called with these arguments a graphic object is used to mark the
point in the scatter plot. The size of the symbol is given in centimeters by “PGsize” which defaults to 1/
100 of xsize. PGsize is the radius of the circle which circumscribes the graphics objects marking the
points. The object itself is determined by the value of “sides”. Typically “sides” will be the number of
sides of a polygon and defaults to zero in order to indicate a circle. The following are valid numbers for
“sides”

Size Vs. Symbol in Scatter Plots

size object size object size object

<3 QO [0,2] s O
3 ¥ 3 7 O
2 X 4 8 O
1 _I_ 5 >8 O

Figure 4-5 - Value of “size” vs. Symbol Output. These may also be set inside FrameMaker.

The objects shown above were taken from plots made with the FM _scatter function using the various size
values and 0.25 for PGsize.
2. FM_scatter (const char* filename, row_vector &vx, char a, double xsize=14, double ysize=14) - When
the function is called with these arguments it uses a character to mark the points in the scatter plot.
These objects marking the plotted points are grouped together and can be manipulated as awhole or individ-
ually inside of FrameMaker. It is recommended that “filename” end with “.mif” to signify a FrameMaker MIF
file. Note: block_1D can be substituted for row_vector in this function.

Return Value:

Nothing. A new disk file is produced for incorporation into FrameMaker.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 35
Graphics & 1/0 FrameMaker Functions 34
Examples:
#include <gamma.h>
main ()
{
block_1D BLK(50); /I create a data block
double x,y,theta; Il declare needed variables
double a,b; /Il declare needed variables
for(int i=0; i<50; i++) //'1oop through 50 points
{ /I fill up block with Prolate Cycloid
a=1,
b=2;

theta=-Pl + i* (4.0 P1/49.0);
X = a*theta - b*sin(theta);

y = a- b*cos(theta);

BLK(i) = complex(x,y);

FM_scatter(“FM.mif”, BLK, 0,.1, 14, 5);

[l angles span -pi to 3pi
/I x = a(theta) - b*sin(theta), here a=1, b=2
Il'y = a- b*cos(theta)

/I output FrameMaker .mif plot file

}
FM_scatter Examplel Output
30 ° o o ® o o o . e ® °®
2 [J o Py Py ° o
| 4 e
[J [J
1_ N .. 0. ®
0- . ° o
% o o 0
| | | |
-2 0 2 4 6 8

Figure 4-6 - The plot above was contained in the file FM.mif and imported directly to this
document. Minor alterations were performed in FrameMaker (coloring, sizing, and axis
font changes). The import command within FrameMaker is under the File option. Each
symbol can be manipulated individually or all simultaneously within FrameMaker.

Thus one can fill the circles, change their sizes, etc. after the plot has been produced.
The next example demonstrates this ability and the use of characters to mark the points.

Copyright Tilo Levante, Scott Smith, Beat H. Meier

May 22, 1998

GAMMA FrameMaker Output 36
Graphics & 1/0 FrameMaker Functions 34

#include <gamma.h>

main ()
{
block_1D BLK(101); /I create a data block
double x,y,a=3; /Il declare needed variables
for(int i=0; i<51; i++) /I fill block with Strophoid
{ I'y**2 = x**2[(a-X)/(atX)]

x = (5.5*1/50)-2.5;

y = srt(x*x* (ax)/(at+x));
BLK(i) = complex(x,y);
BLK(100-i) = complex(x,-y);

}
FM_scatter(“FM.mif”, BLK, ‘b"); // Output FM scatter plot, letter b marking
points.
}
FM _scatter Example 2 Output
5
(0] I
5L

) 1 0 il) 3

Figure 4-7 This plot above was also produced into a file called FM.mif and imported directly to this
document. It has be subsequently altered within Framemaker. First, the overall plot dimensions
was changed from the default values of 14cm by 14cm. Second, the plot originally had the char-
acter b marking each point. As all points are a single graphics object these b’s were all changed
simultaneously to a larger font size (default 12pt to 14pt) and to a new font type (Zapfdingbat).

See Also: FM_1D, FM_1Dm, FM_xyPlot, FM_histogram

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 37

Graphics & 1/0 FrameMaker Functions 34
3.4.6 FM _contour
Usage:

#include <FrameMaker.h>
void FM_contour(const char* filename, matrix &mx, double threshold, int steps=3,
double CLI=0, double CLM=1, int CPN=1, double xsize=10, double ysize=10);

Description:

The functions FM_contour is used to create contour plots in FrameMaker MIF format.

FM_contour (const char* filename, matrix & mx, double threshold, int steps, double CL1, double CLM, int

CPN, double xsize, doubleysize) -The function FM_contour creates a FrameM aker file called filenameinthe

MIF format. The produced file will contain a contour plot of the real data contained in the matrix mx. The

contours begin at the level set by threshold and increment by the value of CLI. The number of contoursis set

by steps. Thelevelsincrement either geometrically or linearly as set by thevalue of CLM, thedefault islinear.

Positive and negative contours are set by the flag CPN. For CPN=1 (default), both positive and negative con-

toursare produced. For CPN=0 only the positive contours are output while for CPN=-1 only the negative con-

tours are done. The output file contour plot will be of dimension xsize by ysize (both given in centimeters,

default 10 cm).

Contour Parameters -

filename - Although not mandatory, this should be “name.mif” where the .mif indicates a FrameMaker file.
mx - Can be any matrix or block_2D in GAMMA. Note that it is the real data that is contoured.

threshold- This can be a positive or negative quantity. If both positive and negative contours are to be per-
formed, the absolute value will be taken for the first contour of the positives and the negative of the absolute
value taken as the first contour of the negative levels. This is shown in the following figure where the dashed
line indicates the value of threshold and the arrows indicate the direction of subsequent contour levels.

Choosing Contour Levels

1 1 1
0.8 0.8 0.8|

0.6 0.6 . 0.6

0.4 0.4 ¢ 0.4

0.2 1 0.2 0.2 i

0 0 0
_0_21\/_/ \/\ﬁ _0_2/\/\ /\/\ Y AVAWER WAV
CPN=0 CPN =-1 CPN=1
threshold = -0.1 threshold = 0.6 threshold = +/-0.1

Figure 4-8 - Depiction of the two basic parameters for picking contour levels.

steps- This is the number of contour levels to plot. The default value is 3 and the maximum value is set to 20.
If both positive and negative contours are output, there will be still be this number performed in both contour
directions. Note that the contours may not be visible in the plot if there is no data in the input matrix corre-
sponding to the contour level.

CLI, CLM - These are the linear and geometric factors which change the contour levels at each step. CLI must

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 38
Graphics & 1/0 FrameMaker Functions 34

have a positive value regardl ess of whether one desires positive or negative contours. CLM must be positive
and >= 1. Typically CLM ranges between 1(default) and 2. The first contour will occur at the value set by
threshold (level 0 = threshold). The next contour will be determined strictly by the threshold value and the
value of CLI, namely level 1 = threshold + CLI. Subsequent levels are determined jointly by the values of
CLM (Contour Level Modifier) and CLI (Contour Level Increment). Generally the contour levels above the
initial level 0 are determined from level i =level (i-1) + [CLI * (CLM)i'l]. Note that thereisadefault setting
of CLI to zero which flags the contour function(s) to determine an appropriate CLI| for the number of steps
input. Below are afew 1-dimensional plots depicting how CLM and CLI interact. Setting CPN to -1 would
will keep the contour spacing the same but they will decreasein height from the initia level.

Multiple Contour Levels

[AN threshold = -0.1
F——\ steps>=11
/ \ CLI=0.1
/ \ CLM =1

P — | AN CPN =0

B /\ threshold = 0
steps>=3

CLI=0.3

B / \ CLM =1

N N CPN =0

© 0000

© 0000

- /\ threshold = -0.1

— / \ steps>= 5
/ \

CLI =01

P / \ PN CLM =15
\\ // \\ // CPN=0

o 0000

NONDMOOOR NONDMOOOR NONDOOOR
|
T~
_—

Figure 4-9 - Examples depicting function arguments vs. contour levels chosen..

Setting CPN to 1 will produce the same levels as well as those mirrored vertically about 0, except that the
input threshold must be greater than 0. Thus keeping the setting asin the above diagram the but with CPN=1
will force the function to internally alter these input thresholds.

CPN - Thisisaflag toindicate whether positive (or increasing), negative (or decreasing), or both positive and
negative contours. If CPN = 0, only contours increasing from the set threshold will be computed. If CPN = -
1 only contours decreasing from the set threshold will be computed. If CPN = 1 (default), contour will be
computed increasing from [threshold| and decreasing from -[threshold|.

Xsize, ysize - These determine the overall plot dimensions the FrameMaker output will assume. The values
are input in centimeters and are defaulted to 10 cm each. The values do nothing to the relative x to 'y scaling
implicit in the data matrix, thus a 256 by 512 array will be 5 x 10 cm even though xsize and ysize are both set

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 39
Graphics & 1/0 FrameMaker Functions 34

to 10 cm.
Return Value:

Nothing. A new disk fileis produced for incorporation into FrameM aker.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 40

Graphics & 1/0 FrameMaker Functions 34
Example:
#include <gamma.h>
main()
{
matrix mx(101, 101); /I create a 101x101 matrix for data
row_vector BLK1 = sinc(101, 50, 10); /I use provided window sinc function
row_vector BLK2 = sin_sguare(101, 50); // use provided window sin squared function
for(int i=0; i<101; i++) /l'loop through and fill up the matrix

for(int j=0; j<101; j++)
mx(i,j) = BLK1(i) * BLK2());
FM_contour(“contour.mif’,mx,.05,10,.05); //create file FM contour file - contour.mif

}
FM _contour Example Output

S oooo
OoN DO

0.

0.

0.

: /\/\

Figure 4-10 Contour plot of the 101x101 matrix which is a sinz(x) on one axis and a sinc(y) on the
other axis. The first contour is set at +/-0.05 and increments by 0.05 up and down over 10 con-
tours - of which only four of the negative contours exist. The file contour.mif was incorporated
directly (contained in the box) to this document using the FrameMaker import command. The

plot was resized and the negative contour lines switched to dashed for highlighting. The two
1D-plots were independently generated (with FM_1D) and added for clarity.

See Also: FM_stack

oONDdO®

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 41
Graphics & 1/0 FrameMaker Functions 34

3.4.7 FM _stack

Usage:

#include <FrameMaker.h>
void FM_stack(const char* filename, matrix &mx, double xinc, double yinc,
int row_inc, double xsize=14, double ysize=14)

Description:

Thefunction FM_stack creates a FrameMaker file called “filename” in the MIF format. It contains a single
stack plot of dimension xsize by ysize (both given in centimeters, default 14 cm). The data is input in the form
of a matrix and the plot is of the entire matrix real date values xinc and yinc, also given in centimeters,

are the amount to shift the next row in the horizontal and vertical directions respectively. The rows which are
to be plotted are specified by the value row _inc, e.g. a row increment of 3 causes the first, fourth, seventh,
etc., until the end of the matrix is reached.

Plotting Parameters - The total plot dimension is specified by the values of xsize and ysize, the entire plot
will be scaled to fit into this box. The amount of skewing that the plane containing the baselindgre

the zero level of the rows lie, is set by the values of xinc and yinc. This plane is that which is horizontally
striped in the figure. The value Ak is (mxrows+1)*xinc and the value A¥ is (mxrows+1)*yinc where
mxrows are the total number of rows in the input matrix. (The 1 is added because there is a border drawn
around the plane). Peak intensities will then be scaled to fill the rest of the plot areaefticed,peak scal-

ing ismainly determined by combination of yinc and ysize.

Stack Plot Perspective

ysize

AX
- |

Xsize
Figure 4-11 - How to set the skew or viewing angle in the FM stack plot function.

Changes made to the row increment, row_inc, somewhat affects plot scaling as well because only the rows
actually plotted are considered, not the entire data matrix input. The figure below demonstrates the effect of
increasing the value of row_inc.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 42
Graphics & 1/0 FrameMaker Functions 34

Sack Plot Row I ncrements

increased YA 7
row_inc yA ~

Figure 4-12 - The effect of the row increment arguemnt.

Thevalue of xinc dictates how much horizontal skew thereisinthefinal plot. Negative val ues are acceptable,
this simply changes the orientation as shown in the next figure.

Negative xinc Zero xinc Positive xinc Larger Positive

Figure 4-13 - How xinc affects the skewing of the output stack plot.

In asimilar fashion, yinc dictates the amount of vertical skew there is. Negative values for yinc are not cur-
rently supported and will yield unpredictable plots. Rather it is recommended that the matrix is multiplied by
-1 prior to entering this function.

xinc, yinc, and Stack Plots

Not supported §

Negative yinc Zeroyinc Positive yinc Larger Positive

Figure 4-14 - How xinc affects the skewing of the output stack plot.

Graphics Properties - Within FrameM aker, stack plots generated with this function are full graphics objects and have
agraphics hierarchy. The entire plot is grouped and can be resized, annotated, or rotated. As aexample, the figure be-
low isastack plot generated with thisfunction which has been manipulated several different wayswithin FrameMaker.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 43
Graphics & 1/0 FrameMaker Functions 34

Graphical Manipulations of Stack Plots Within FrameM aker

Hidden Lines now Visible

Figure 4-15 - The two plots above were contained in the file FM.mif and imported directly
to this document without further ateration. The import command within FrameM aker
isunder the File option. These plots were produced from the example code.

Furthermore, each row can be individually manipulated al so be manipulated as a graphics object as the following di-
agram illustrates.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 44
Graphics & 1/0 FrameMaker Functions 34

More Graphical Manipulations of Stack Plots

-~

A A

L

v v
Original Plot Specific Line Highlighted
A N A A
Positive, in plane, & negative Specific Line Isolated

Figure 4-16 - The two plots above were contained in the file FM.mif and imported directly
to this document without further alteration. The import command within FrameM aker
Isunder the File option. These plots were produced from the example code.

FrameMaker MIF files are typically named with a “.mif” suffix so it is recommended that all filenames used
for this function have a .mif at the end.

Return Value:

Nothing. A new disk file is produced for incorporation into FrameMaker.

Example:

#include <gamma.h>

main()
{
matrix mx(101, 101); /I create a 101x101 matrix for data
block_1D vx(100); /I create a 1D-data block of length 101
vx = sinc(101, 50, 10); /' use provided window sinc function
for(int i=0; i<101; i++) I/ 1oop through and fill up the matrix

for(int j=0; j<101; j++)
mx(i.j) = vx(i) * vx(j);
FM_stack(“stack.mif”, mx, 0.02, 0.02, 1); // output the FrameMaker .mif plot file
}

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

FrameMaker Output
3.4

GAMMA
FrameMaker Functions

Graphics & 1/0

FM _stack Example Output

Figure 4-17 This example generates a 101x101 matrix which is a sinc function along both axes. The
first contour block plotted is row 0. Each successive row begins 0.02 cm above and 0.02 over
from the previous row. In this example the row increment is set to 7. The default dimensions of
14x14 cm are used (because they are left out of the function call). Note that the plot here has

been rescaled.

See Also: FM_contour

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 46
Graphics & 1/0 FrameMaker Functions 34

3.4.8 FM _sphere

Usage:

#include <FrameMaker.h>
void FM_sphere(const char* filename, int type=2, double alpha=0, double beta=15,
double gamma=-15, double radius=5, double points=100);
void FM_sphere(const char* filename, coord_vec &data, int type=0, double alpha=0,
double beta=15, double gamma=-15, double radius=5, double points=100);
void FM_sphere(const char* filename, coord_vec &datal, coord_vec &data2, int type=0,
i double alpha=0, double beta=15, double gamma=-15, double radius=5, double points=100);

Description:

The function FM_sphere creates a FrameMaker file called filename in the MIF format. It contains asingle
3D-plot which has been proj ected after rotation by the Euler anglesal pha, beta, and gamma,(input in degrees)
to produce the desired perspective.

1. FM_sphere (const char* filename, int type, double alpha, double beta, double gamma, double radius, int
points) - Used in this manner, the function plots no data, only coordinate axes and/or a coordinate sphere
depending on the value of type. For type = 0, the three coordinate axes are drawn of (unprojected) length
2*radius. For type=0, the coordinate sphere having radius of radius is drawn along with it’s intersection
with the three planes (xy, xz, & yz). For type = 2, both the axes and the sphere are drawn. The value of
pointsspecifies how many points to use when drawing each sphere-plane intersection.

2. FM_sphere (const char* filename, double coord_vec, int type, double alpha, double beta, double gamma,
double radius, int points) - When the function is called with these arguments it draws the plot produced
in the description above (1.) with both axes and the coordinate sphere. It then adds the data contained in
the coord_vec dat@ the plot.

3. FM_sphere (const char* filename, double coord_vec, double coord_vec, int type, double alpha, double
beta, double gamma, double radius, int points) - When the function is called with these arguments is the
same as the previous description (2.) but plots both data setsaddtdata?

2D Projection - Initially, the coordinates and/or drawn coordinate system is rotated by the specified Euler angles. The
rotated three dimensional coordinates are then projected onto the 2D plane of the paper (or screen). To produce a rea-
sonable plot the 3D z-coordinates is mapped into the 2D y-coordinates and the 3D x-coordinates are mapped into the
2D negative x-coordinate as depicted in the figure below. This mapping keeps everything related to standard right-
handed coordinate systems. The initial, unrotated system has y coming up out of the paper plane.

Figure 4-18 - Depiction of (simple) 3D Euler Rotation and subsequent projection on plot axes.

Perspective, Euler Rotations - The three Euler angles can dramatically change the quality of the out put plot. The de-
fault Euler angles are set to produce a nice view of typical data, maintaining the z axis vertical. The following figures
demonstrate by example the effect of the various Euler angles on the final coordinate axes in which the data is drawn.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 47
Graphics & 1/0 FrameMaker Functions 34
yA y
a,B,y project
— —
[] []
X X

Coordinate Vector
Coordinate System

X ____;::::><::::fi;—

Rotated Data 2D Projected (Paper)
Coordinate System Coordinate System

Euler Rotations About o and

z z z Z
a=0 a=10 a=45 a=90
=0 =0 =0 =0

z Z Z Z

I A I

| i VJV
o=0 a=10 a=45 =90
B=10 B=10 B=10 B=10

L Z

y y y y
a=0 a=10 a=45 a=90
=45 3=45 [3=45 [3=45

y y y y
o=0 a=10 o=45 0=90
B=90 [3=90 =90 [3=90

Figure 4-19 - Examples of rotations using only the 1st two Euler Angles.

Copyright Tilo Levante, Scott Smith, Beat H. Meier

May 22, 1998

GAMMA FrameMaker Output 48
Graphics & 1/0 FrameMaker Functions 34

These axes were generated with the program listed as Example 1 using aradius of 1 (cm), agammavalue of zero (de-
grees), and type 0 (only axes). The axis orientation proceeds viafirst rotating about the z axis with angle a phafollowed
by rotation about the new x axis with angle beta. The last rotation, if gamma were non-zero, is about the new z axis
with angle gamma. Looking from the positive axis toward the origin, all rotations appear clock-wise!.

Euler Rotations About g and y

z z z
X I X I X I X I
y y
=0 B=10 B=45 =90
y=0 y=0 y=0 y=0
T z
z
X X I’ X X 7L
| V] /
=0 =10 =45 BZQO
y=10 y=10 y=10 y=10
z z
X X i §
ot s X
Y y
=0 =10 B=45 =90
y=45 y=45 y=45 y=45
z z , X
y I y \ y 4X7 y +
| | .
=0 B=10 B=45 =90
y=90 y=90 y=90 y=90

Figure 4-20 Again, these axes were generated with the program listed as Example 1. The axis ori-

1. Euler rotations follow the right hand rule, that is, the coordinate system moves counter-clockwise about the
rotation axes. An alternate and equivalent view isthat the coordinates themsel ves move clock-wise about sta-
tionary axes. Thisfunction strictly adheresto thisconvention. The overall plot isreferenceto some static axes.
Any dataisthus rotates by input Euler angles clock-wise relative to these stationary axes. The axes sketched
by this function are axes for the data (absent in one function usage) of the input coordinate vector, not the
overall static reference axis. Thus, the rotations of the plotted axes follow the rotation convention of the co-
ordinates themselves: they rotate clockwise about the axes of rotation.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 49
Graphics & 1/0 FrameMaker Functions 34

entation proceeds via first rotating about the z axis with angle alpha (in this case alpha=0, so
not performed), followed by rotation about the new x axis with angle beta (in this case about the
original x-axis), and then followed by rotation about the new z axis with angle gamma.Looking
from the positive axis toward the origin, all rotations appear clock-wise.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 50
Graphics & 1/0 FrameMaker Functions 34

Example 1.

#include <gamma.h>
main ()
{
cout << “\nPlease input a radius(cm): ;
double radius;
cin >> radius;
cout << “\nPlease input a Euler angle alpha(deg): *;
double alpha;
cin >> alpha;
cout << “\nPlease input a Euler angle beta(deg): “;
double beta;
cin >> beta;
cout << “\nPlease input a Euler angle gamma(deg):
double gamma;
cin >> gamma;
cout << “\nPlease input plot type (O=axes, 1=planes, 2=both): *;

int type;
cin >> type;
FM_sphere(“*FM_sphl.mif”, type, alpha, beta, gamma, radius);
}
FM_sphere Example 1 Output
o =45 a=5 a=0
B =10 [3 =10 [3 =15
y=0 y=15 y=-15
type=0 type=1 type=2
radius=2 radius= 1.0 radius= 1.5

Figure 4-21 This example program runs interactively and prompts the user for information concern-
ing the plot. Here, the function FM_sphere is used only to produce a coordinates system plot -
either axes, the coordinates sphere, or both.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 51

Graphics & 1/0 FrameMaker Functions 34
Example 2:
#include <gamma.h>
main ()
{
coord_vec datal(500); /I Declare a 500 point coordinate vector
coord_vec data2(500); /I A second coordinate vector
double xx, yy, zz; I/ Declare needed variables
double theta; /I Declare an angle variable
for(int i=0; i<500; i++) Il Fill datal with a spiral
{

theta = i*6.0* PI1/499.0;
xx = 3.0* cos(theta);
yy = 3.0*sin(theta);
zz=3.0- (6.*1/499.);
datal.put(xx, yy, zz, i);

data? = datal.rotate(90,90,0); Il Set 2nd coordinate vector to rotated datal
FM_sphere(“*FM_sph2a.mif”, datal,0); /I Output FrameMaker file FM_sph2a.mif
FM_sphere(“*FM_sph2b.mif”, data2,1); /I Output FrameMaker file FM_sph2b.mif
}

FM_sphere Example 2 Output

Figure 4-22 This example demonstrates the use of the function FM_sphere for plotting a coordinate
vector. The value of type indicates whether the plotted data should be a solid line, individual
points, or vectors (see Example 3). The function rotate is a member function of a coordinate
vector. The sphere size (default 5 cm radius) was altered to 2.5 cm radius within FrameMaker.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 52

Graphics & 1/0 FrameMaker Functions 34
Example 3:
#include <gamma.h>
main ()
{
intsize = 31; /Il Set 31 points
coord_vec trgj1(size); /I Declare two coordinate vectors

coord_vec trgj2(size);
double xx, yy, theta;

for(int i=0; i<size; i++) /I Fill coordinate vectors

{ Il Trajectory 1isintheyz plane
theta= (PI1/2.0)*i/(size-1); /I decreasing from (001) to (010)
XX = cos(theta); Il Trajectory 2 isin the xz plane
yy = sin(theta); /Il decreasing from (100) to (00-1)

trg 1.put(0,yy,xx,i);
traj2.put(xx,0,-yy,i);
}

FM_sphere(*FM_sph2.mif”, traj1, // Output FrameMaker MIF file
traj2, 2, 0.0, 15.0, -45.0); // Euler angles for nice perspective
}

FM _sphere Example 3 Output

i)

444

A4,
Figure 4-23 - The two plots above were contained in the file FM.mif and imported directly

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 53
Graphics & 1/0 FrameMaker Functions 34

to this document without further alteration. The import command within FrameM aker
Isunder the File option. These plots were produced from the example code.

See Also: None

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 54
Graphics & 1/0 FrameMaker Functions 34

3.5 Routinesfor Matrix Output in FM

351 FM_Matrix

Usage:

#include <FrameMaker.h>
void FM_Matrix (const char* filename, gen_op& Op, int prec = 2, int threshold = 0.001);
void FM_Matrix (const char* filename, matrix& myx, int prec = 2, int threshold = 0.001);

Description:

Thefunction FM_Matrix generates a FrameMaker Mathematical Language (MML) file which can be direct-
ly imported into a FrameMaker Document. For floating numbers, prec (default=2) digits after the decimal
point will be used. If either the real or imaginary part has anorm of lower than threshold, it will be left away
on output. If both, the real and imaginary part are below threshold, a simple 0 is written to Output.

If afloating number is closer then threshold to the nearest integer, the integer is outputed.(See example be-
low).

Return Value:

Nothing. A new disk filein the MMF is produced for incorporation into FrameM aker.
Example:

#include “gamma.h”
main()

{

matrix c;

cin >>c;

cout << c;

FM_Matrix (“Testal.mmf”,c);

}

Dialog From Program Execution:

>33

>1.00.0
>1.001 0.0001
>0 0.00001
>0.1

>10

>5 3.00001
>4 4

>55

>6 6

3 x 3 full matrix

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 55
Graphics & 1/0 FrameMaker Functions 34

(1.00, 0.00) (1.00, 0.00) (0.00, 0.00)
(0.00, 0.10) (0.10, 0.00) (5.00, 3.00)
(4.00, 4.00) (5.00, 5.00) (6.00, 6.00)

Testal.mmf file imported directly into this document:

1 1.00 0
0100 010 (5+30)
(4+4T0) (5+50) (6+60)

Figure 4-24 - The two plots above were contained in the file FM.mif and imported directly
to this document without further alteration. The import command within FrameM aker
isunder the File option. These plots were produced from the example code.

Note that the 1,1 is set to the integer 1, the 1,2 element to 1.00 because itsfull valueis 1.001. The
imaginary part has avalue of 0.0001 and falls below threshold.

See Also: FM_Mat_Plot

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 56
Graphics & 1/0 FrameMaker Functions 34

352 FM_Mat_Plot

Usage:

#include <FrameMaker.h>

void FM_Mat_Plot (const char* filename, gen_op& Op, int threshold = 0.001);

void FM_Mat_Plot (const char* filename, matrix& myx, int threshold = 0.001);

void FM_Mat_Plot (const char* filename, gen_op& Op, gen_op& ref_Op, int threshold = 0.001);
void FM_Mat_Plot (const char* filename, matrix& mx, matrix& ref_mx, int threshold = 0.001);

Description:

The function FM_Matrix generates a FrameMaker Interchange Format (MIF) file which can be directly
imported into a FrameM aker Document. The file contains a graphical depiction of the matrix or the operator.
Whenever the norm of an element is larger then threshold, a black squareis put to the appropriate position.
For the forms with two Operator or Matrices on input, black squares are placed everywhere where the
difference in the norm of the elements of the two respective matrices is above threshold.

Return Value:
Nothing. A new disk filein the MIF format is produced for incorporation into FrameMaker.

Example:
#include “gamma.h”
main()

{

matrix c;

cin >>c;

cout << ¢;

FM_Mat_Plot (“Testal.mif”,c,1.0);

}

Dialog of Program Execution:
>33
>1.00.0
>1.001 0.0001
>0 0.00001
>0.1
>10
>5 3.00001
>4 4
>55
>6 6
3 x 3 full matrix
(1.00, 0.00) (1.00, 0.00) (0.00, 0.00)
(0.00, 0.10) (0.10, 0.00) (5.00, 3.00)

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output
Graphics & 1/0 FrameMaker Functions

57
34

(4.00, 4.00) (/5.00, 5.00) (6.00, 6.00)
Testal.mif fileimported directly into this document:

Figure 4-25 - The result of the example program read into this document.

See Also: FM_Matrix

Copyright Tilo Levante, Scott Smith, Beat H. Meier

May 22, 1998

GAMMA FrameMaker Output 58
Graphics & 1/0 FrameMaker Functions 34

3.6 Mathematical Details & Code Specifics

3.6.1 FrameMaker Contour Plots

The contouring function takesa GAMMA matrix and slices through specified contours to produce
aFrameMaker MIF output file. An attempt is made to group all points for each specific contour
line together as a single PolyLine. Following this, all PolyLinesfor a specific contour level are
grouped together. As alast step, al positive contours are grouped together as are al negative con-
tours. The contouring algorithm processes the matrix in the following general order.

| Function arguments are checked for validity and adjusted if necessary (contour_setup).
| Any positive or increasing contours are first taken followed by any negative contours.

| Individual contours are converted to FM PolyLines in the function contour_level.

| Contours are grouped together as all positives and/or all negativesin group_contours.

| Initially, the function FM_contour checks its input arguments with the auxiliary function
contour_setup. This function first checks that the overall plot size is reasonable:

xsize J[5cm,20cm] & ysize [J[5cm,27cm| . Then it insuresthat the input matrix islarge enough
to be contoured, the smallest allowed matrix is5x5. A scaling factor for cm/point isthen computed,
thisisthe same in both dimensions to keep the relative contour plot size proper in the two dimen-
sions. The next check looks for the matrix global maximum and minimum. If these are the same
the matrix will contain no contours and the function signalsan error. A check isalso madeto insure
that the number of contours requested isreasonable: steps [1[1,20] . Then, theinput value of CPN
(sets how contouring is done) is checked: CPN [J[1,0, —1] . Based on the requested contours, the
input threshold (initial contour) is checked to insure that some contours will exist.

| At this point, the function FM_contour beginslooping through the chosen contour levels. Loop-
ing through positive (or increasing) contoursisfirst performed if CPN >= 0, then looping is done
for negative (or decreasing) contoursif CPN != 0. When taking positive (or increasing) contours,
searching begins at the value threshold. Negative (or decreasing) contours start at either +/-thresh-
old depending upon whether positive contours have be taken.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 59

Graphics & 1/0 FrameMaker Functions 34
Contours
1 1 1
0.8[o.s{ 0.8[
0.6 0.6 0.6
0.4 0.4 i 0.4]
0.2 T 0.2 0.2] T
0 0 0
_0.2!\/\/ \/\/\ 05 /\/‘ Y AVAWER WAV
CPN =0 CPN =-1 CPN =1
threshold = -0.1 threshold = 0.6 threshold = +/-0.1

Figure 4-26 - The two plots above were contained in the file FM.mif and imported directly
to this document without further alteration. The import command within FrameM aker
Isunder the File option. These plots were produced from the example code.

Before the contour looping begins, the value of CL1 is set so that successive contour levels are ei-
ther larger (+ or increasing contours) or smaller (- or decreasing contours). Additionally, the value
of extremum is set to the maximum or minimum contour level. If contouring is set in the function
call to go beyond the matrix maximum/minimum the value of extremum will stop unnecessary
contouring. Thus, contouring for positives or negatives will stop if abs(threshold) > abs(extrem-
um).

Aslooping begins over the number of contours desired, steps, the contour number is set to level,
the contour valueis set to acthresh, and the contour 1D conl D is set’. Actual contouring on anin-
dividual level is performed isthe auxiliary function contour_level. When contouring is compl eted
for avalue of acthresh the value is adjusted and the loop continues to the next contour level. The
contour levels are set to change either monotonically or geometrically depending upon the value
of CLM.

acthresh,, = acthresh,,,q _; +[CLI x CLM!evel =1]

When CLM=1 the levels will change monatomically and when CLM>1 the levels change in geo-
metric fashion?.

1. The contour ID is set for use in FrameMaker. Each contour is given an individual 1D so that it is a specific
graphic object within FrameMaker. Subsequently, each contour may be independently manipulated within
FrameMaker.

2. Valueswhere CLM<0 aredisallowed. If thefunctioniscalled with CLM <0 it isreplacesby CLM=abs(CL M)
in the function contour_setup.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 60
Graphics & 1/0 FrameMaker Functions 34

Multiple Contours

= N threshold = -0.1
—\ steps >= 11
/ \ CLI=0.1
/ \ Clm=1

— X / \ 7 X —~ CPN=0

[/\ threshold = 0
steps >=3

CLI=0.3

B / \ CLM=1

~ N/ NZ A CPN=0

O 0Oo00Oo

O 0000

— /\ threshold = -0.1

— / \ steps >= 5
| / \

(©o0o0o OO0« OO0«
oONDM~O OO NONDOOOR NONDOOOR
|
~—
_—

o

N
/
N
-
N\

CLI=0.1

N N4 CPN=0

Figure 4-27 - The two plots above were contained in the file FM.mif and imported directly
to this document without further ateration. The import command within FrameM aker
isunder the File option. These plots were produced from the example code.

| Contouring for anindividual level is performed in the routine contour_level. In thisfunction the
entirematrix is scanned for possible contours and these are (hopefully) converted into FrameM aker
PolyLines. Thealgorithm used isbased on athree point search of all the datain the matrix. Looping
occurs over all matrix pointst (“horizontally” as the column index changes more rapidly than the
row index), P, = []mx|jC . For eacR, , a second pdat is chosen which is the first diagonal
relative toP,; , namelyP, = [+ 1jmx|j + 1C . These two points form the corners 2x2 sub-matrix,
and a triangle is formed with a third point of this sub-matrix; first an upper triangle with point

U = [mx] + 1, then a lower triangle with poirlt = [+ 1|mx|j

1. The pointsin the last matrix row and column are never chosen as the point P, but are included in the con-
touring as they will be taken as either P,, U, or L eventually.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 61
Graphics & 1/0 FrameMaker Functions 34
Contouring Concept

-

N =

-

»
c
(@]
5

: Py (i,])

.’Dé Data Matrix
z L: (i+1,) Py (i+1,+1)
o

Column Dimension

Figure 4-28 - How a matrix is searched for contours in the GAMMA FM_contour function.

For each triangle formed, both upper and lower, function contour_level determines whether acon-
tour line passes through it and if so the two points where the contour line intersects the triangle

there are eight unique situations which exist in looking for a contour linein the triangle, as given
in the following table.

Table 1: Eight (23) Triangle Based Contouring Situations Possible

1st Point (29) 2nd Point (21) 3rd Point (2°) Situation
P, >= threshold (0) P, >= threshold (0) U/L >= threshold (0) 0
P, >= threshold (0) P, >= threshold (0) U/L< threshold (1) 1
P, >= threshold (0) P, < threshold (2) U/L >= threshold (0) 2
P, >= threshold (0) P, < threshold (2) U/L< threshold (1) 3
P, < threshold (4) P, >= threshold (0) U/L >= threshold (0) 4
P, < threshold (4) P, >= threshold (0) U/L< threshold (1) 5
P, < threshold (4) P, < threshold (2) U/L >= threshold (0) 6
P, < threshold (4) P, < threshold (2) U/L< threshold (1) 7

Based on the binary T/F conditions for each point of the triangle, there are 8 situations possible,
one of which will occur for each specific triangle. These can be visualized, as shown in the follow-
ing figure (upper triangle shown only). Two of these, #0 - all points above the contour level, and
#7 - dl points below the contour level will contain no contour contribution. All the other situations
will contribute to some contour on the contour level being examined. The contour line contribu-

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 62
Graphics & 1/0 FrameMaker Functions 34

tionsare showninthick solid lines. By using alinear fit, the endpoints of the solid lines (where the
triangle intersects the contour plane) are calculated in routine contour_level and forwarded to the
function PL_contour which decides how they contribute to the contour.

Contouring Theme

Py Py

o () l

> e

0 7 1 7 2

Py Py
o/ @) Contour Leve
® o
P, P

Figure 4-29 - Possible interasections between 3 points and a contour plane.

The diagramsin the previousfigure are a bit contrived because the points are rendered to show the
matrix i,j (or X,y) spacing and do not exhibit the point intensities (or z). Thusthe lines crossing the
plane appear vertical, horizontal, or parallel with the skew of the plane itself. Thisis not the case
for the matrix points which actually form these triangles whose z-values will likely vary. Again,
for each upper and lower triangle either two or zero points are thus generated which belong to some
contour line in the contour level being treated. These two points are passed on to the function
PL_contour which places them into a FrameMaker Polyline.

These two contour points occur where two of the threetrianglelines {P, - U, P, —P,, U —-P,}
cross the contour level plane (or {P;-L, P, —P,, L—P,} forthelower triangles), so determin-
ing their values is accomplished by solving the problem of where aline in 3-dimensional space
crosses aplanet. Using vector notation, aplane isdefined by the scalar product relationship which
exists between a vector in the plane and a vector normal to the plane. For the contour level plane
thiswould be then

I'A:'plane' k=0

where I5p| ane ISthearbitrary vector which liesin the contour plane and ka (unit) vector along the
z-axis and perpendicular to the contour pl an€?. Since the contour level plane lies horizontal, the

1. The solution is taken from “Mathematics for Chemists”, Charles L. Perrin, Wiley-Interscience, John Wiley

& Sons, Inc., New York, 1970. See page 181 of that text.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 63
Graphics & 1/0 FrameMaker Functions 34

vector Pp|ane can be taken as the difference of avector (threshol d)R with the intersection point
vector desired.

I'é)plane = Pintersect — (threshol d)R

Thefirst vector may be thought of as one which starts at the origin, runs along the z-axis and is of
length threshold, whereas the second can be assumed as starting at the origin and ending at the
intersection point. One of the two I5p| ane Vectorsfor triangle situation 2 isshown in the next figure.

Contouring Situation

A Py TRIANGLE SITUATION 2
||

«

Two Possible Contour Leve
Pinter sect POINtS (threshold)

threshold k

Figure 4-30 - First type of intersection with a contour plane.

Asfor the 3-dimensional line, T, whichintersects the contour plane we may choose any scalar mul-
tiple of the triangle edges which pass through the plane. Which (if any) triangle edges to choose
will also depend upon which of the eight situationsis under consideration. Expanding upon the pre-
vious figure, one of the two possible lines T is shown.

2. When use the normal vector as k because our contour planes are horizontal . For any general plane wewould

have to use some general normal vector N . Neither the normal vectors origin nor magnitude are of conse-
guence here so we have chosen avector of length 1 starting at the true matrix origin.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 64
Graphics & 1/0 FrameMaker Functions 34

Contouring Situation

TRIANGLE SITUATION 2

-

Contour Leve
(threshold)

¥

Figure 4-31 - Second type of intersection with a contour plane.
Theline T isthen described by

T= Cl(pl - |5inters;et:t) = Cz(pl - pz) = Cg(pintersect - pz)
where ¢, are any scalar values. For the intersection point, we have
I'é)intersze(:t = Ij1 +cT

We need now substitute P nter sect @sdescribed inthe last equation into our equation for the contour
plane.

Pplane* k = 0
[Pintersect — (threshold)k] « k = 0
[(Py+cT)—(threshold)k] « k = 0
If we solve for the constant ¢’
[(Py+cT)—(threshold)k] « k = 0
[Py« k] +[cTe k] —[(threshold)ke k] = 0
¢+ k = [(threshold)k—P;] « k

. _ [(threshold)k—P4] « k
c =
Tek

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA FrameMaker Output 65
Graphics & 1/0 FrameMaker Functions 34

and then substitute this back into our equation for the intersection point we attain

[(threshold)k—P;] » RT
Tek

Now we need only to described theline T interms of quantitieswe already know to have aworking
formulafor the intersection point. We choose the simplest description of T

T = cy(P1—-Py) = (P1—P))

I'A:'interse(:t = I'é)l"'cl.r = I3’1"'

Our equation isthen
threshold)k —P4] » k
()k—P1] (B —Py)
(P1—P2) ek
and since the z-components are the (matrix) points themselves we have

[threshold - P,]
P, _P, (P1—Py)

If’inters;ect = I:\51 + [

I'é)inters;e(:t = Iﬁl"'

where k is a (unit) vector along the z - direction and perpendicular to the contour level plane, and
where Pg isany point (other that the intersection point) in the contour level plane. The second in-
tersection point may be found by replacing point P, with point 0 (or E) in the previous equation.

Asthe matrix is scanned over a specific contour level (by investigating all of the possible trian-

gles), setsof two points are constantly passed to the function PL_contour. These are stored in dual
“matrices” of contour lines for the level being contoured, one set which is increasing to the “left”
and the other which is increasing towards the “right”. As contributors to the contour lines for the
contour level being treated are found they are treated in three distinct ways.

| Points are not connected to any previous lines found - start a new contour line.

| Points are a continuation of a previous contour line - add it to existing contour.

| Points connect two previous contour lines - concatenate two existing lines into one.
| Points connect a previous contour to form a closed contour - output contour line.

PolyLines are stored, one branching off from the first point to the left and another branching off
from the first contour point to the right.

Copyright Tilo Levante, Scott Smith, Beat H. Meier May 22, 1998

GAMMA MATLAB I/O 66
User Documenation

4 MATLABI/O

4.1 Overview

The MATLAB I/O routines are provided to allow the transfer of matrices between GAMMA and
the program MATLAB..

4.2 Available MATLAB Functions

MATLAB - page 67

4.3 MATLAB Discussion

MATLAB “MAT” File Structure page 70
MATLAB “MAT" File Header Structure- page 70
MATLAB “MAT” File Data Structure- page 71

44 MATLAB Figures& Tables

MATLAB Example Plot 1 page 69
MATLAB Example Plot 2 page 69
MATLAB MAT File Structure page 70
MATLAB MAT Header Structure page 71
MATLAB MAT Matrix Data Structure page 71

1. MATLAB isaproduct of The MathWorks, Inc., 21 Eliot Street, South Natick, MA 01760. Phone: (508) 653-
1415, Telex: 910-240-5521, FAX: (508) 653-2997, E-mail: na.mathworks@na-net.stanford.edu. GAMMA
was written and used in conjunction with PRO-MATLAB for Sun Workstations, the most recent date on the
supplied manual being Feburary 3, 1989.

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O 67
User Documenation Routines 45

45 Routines

45.1 MATLAB

Usage:

#include <MATLAB.h>

void MATLAB (const char* filename, const char* dataname, matrix &mx, int rc=1);
void MATLAB (File &file, const char* dataname, matrix &mx, int rc=1);

matrix MATLAB (const char* filename, const char* dataname);

Description:

The function MATLAB isused to read or write MATLAB MAT files, that is, filesin the standard MATLAB
format. The MATLAB file name is “filename”, typically something with a .mat suffix such as name.mat.

1. MATLARB (const char* filename, const char* dataname, matrix & mx, int rc=1) - WhenMATLAB is
invoked with this argument list it writes the data contained in the matrix “mx” to a newly constructed file
“filename” in the MATLAB MAT format. The data is given the MATLAB internal variable name “da-
taname”. If rc is set to zero only the real part of the matrix is output. If rc is 1 (default), both the reals and
the imaginaries are written. The file is closed upon the function return and will overwrite any file “file-
name” previously in existance when the function is called.

2. MATLAB (File &file, const char* dataname, matrix & mx, int rc=1) - WhenMATLAB is invoked
with this argument list it writes the data contained in the matrix “mx” in the MATLAB MAT format to
wherever the file pointer “file” is at. The data is given the MATLAB internal variable name “dataname”.
If rc is set to zero only the real part of the matrix is output. If rc is 1 (default), both the reals and the imag-
inaries are written. The file where “file” is pointing is assumed to be open when the function is called
and will remain open with the file pointer advanced to the end at the function return. The file should be
closed externally.

3. MATLAB (const char* filename, const char* dataname) - WhenMATLAB is invoked with this argu-
ment list it attempts to read the file “filename”, assumed in the MATLAB MAT format, and retreive the
data “dataname”. The name “dataname” is the variable name which MATLAB uses internally.

Note that MATLAB can be called with a 1 or 2 dimensional data block in place of the matrix (block_1D or
block _2D). MATLAB mat files are typically named with a “.mat” suffix so it is recommened that all filena-
mes used for this function end with .mat.

Return Value:
Nothing when producing a MATLAB file, a matrix when reading a MATLIB file.
Example:

#include <gamma.h>
main ()

{
Filefp; Il Specify afile pointer

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O 68
User Documenation Routines 45

fp.open(“twomxs.mat”,io_writeonly,a_create);// Open file twomxs.mat

matrix mx(101,101); /I Define a matrix

block_1D BLK(101), BLK1(101); /l Define two 1D-data blocks
BLK = sinc(101, 50, 10); Il First block to sinc function
for(int i=0; i<101; i++) I/ Fill matrix with sinc by sinc

for(int j=0; j<101; j++)
mx(i,j) = BLK(i) * BLK(j);
MATLAB(“onemx.mat”, “mx1”, mx, 0); // Output MATLAB file onemx.mat, reals

MATLAB(fp, “mx1”, mx); // Put matrix into file twvomxs.mat, complex
BLK1 = square_wave(101, 20, 70); /' Fill block with box function
for(int k=0; k<101; k++) /I Fill matrix with sinc x box

for(int 1=0; I<101; |++)
mx(k,l) = BLK(k) * BLK1(l);

MATLAB(fp, “mx2”, mx); // Put matrix into file twomxs.mat
fp.close(); /Il Close file twomxs.mat

matrix mx2; I/l Define a second matrix for fun
mx2 = MATLAB(“twomxs.mat”, “mx2”); // Read file twomxs.mat, retreive mx2
}

Inthisexample, afile onemx.mat is produced contaning asingle matrix inthe MATLAB MAT format. A sec-

ond file, twomxs.mat, is also produced which contains two matrices useable by MATLAB. In thislatter case

the user opens and closes the file directly and is able to write multiple matricesinto it. Thisis not true for the

first file which is produced with asingle line of code and may contain only one matrix. Finally, the second

file is re-opened and scaned for the variable “mx2”, the second matrix. This is put into the matrix mx2 but
unused in the example.

To see a mesh plot of the data contained in “twomxs.mat” issue the following commands within MATLAB-

* load twomxs - Load in the file. This may need the directory path as well, e.g. load /nmr-
net/home/sosi/twomxs.

* mesh(mx1) - Graph the first matrix as a meshed 2D-plot.

*» mesh(mx2) - Graph the second matrix as a meshed 2D-plot.

mesh(mx2) - Have MATLAB produce a mesh plot of the matrix mx2.

MATLAB plots may beincorporated into FrameMaker if desired. Currently, the MATLAB plot must be out-
put asaMATLAB metafile, converted to HPGL format with the MATLAB supplied program gpp, then con-
verted to encapsul ated postscript with the FrameM aker supplied program hpgltoeps, and finally imported into
the FrameMaker document of choice. Notethat each MATLAB plot must be output to a separate metafile or
the plotswill overlap in FrameMaker. The following plots were produced in this manner from the file twom-
xs.mat created in the example. They have been resized and labeled after importing.

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O 69
User Documenation Routines 45

MATLAB Example Plot 1

MATLAB Example Plot 2

COSSE
10 XSS,

L ‘\“‘ﬁﬁ“ﬁ
SRR T
L R R
LRI NN \‘\\\\\\‘l%e.§
ARAN

T3S

TR SRR S
A8 5 EESERTIRINSNS
\\\‘@‘&%‘s‘“\w

SIS

By default, the northwest corner is the matrix point (0,0) and the southwest corner (0,ncols-
1). The MATLAB commands (here separated by semicolons for brevity)

load twomxs; mesh(mx1); meta MLmx1; mesh(mx2); meta MLmx2; exit;

producethetwo MATLAB metafilesMLmx1 and MLmx2. These are subsequently converted to hpgl format
by the commandsissued in UNIX (again separated by semicolons for brevity)

gpp MLmx1 -dhpgl; gpp MLmx2 -dhpgl

which takesthe MAT files and produces HPGL plot filesMLmxZ1.hpgl and ML mx2.hpgl. These are then con-
verted to encapsulated postscript by issuing the commands from UNIX

hpgltoeps MLmx1.hpgl MLmx1; hpgltoeps MLmx2.hpgl MLmx2

which createsthetwo filesMLmx1 and MLmx2. These are plotted above and wereincorporated into this doc-
ument using the Import option under File at the top of the document in FrameM aker.

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O 70
User Documenation Routines 45

4.6 Description

4.6.1 MATLAB “MAT” File Structure

MATLAB aways maintainsits dataas matrices and each MATLAB MAT file may contain severad
matrices. Internally, each matrix is preceeded by a header which contains the information reguard-
ing the data size, the matrix name, and so forth. This scheme is depicted in the figure below.

MATLAB MAT File Structure

Header 1
Data Matrix 1

Header 2

Data Matrix 2

Header 3
Data Matrix 3

Other | Data

Figure 25-1 - Overall file structure of a MATLAB MAT file containing multiple matrices.

4.6.2 MATLAB “MAT” File Header Structure

The header structure is described in the MATLAB manua under load, save in the Reference Chap-
ter, page 3-75 in the PRO-MATLAB August 1987 version. Essentially each header isa 20 byte
structure containing 5 four-byte long-integers (words) as depicted below

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O 71
User Documenation Routines 45

MATLAB MAT Header Structure

type Mrows ncols magf namlen

Figure 25-2 - Header Structure of a MATLAB MAT file.
The five parameters are defined as follows.
type - Type flag. Aninteger indicating the computer type the data was produced on.
mrows - Row dimension. An integer with the number of rows in the stored matrix.
ncols - Column dimension. An integer with the number of columns in the matrix.
imagf - Imaginary Flag. Real data: imagf=0; Complex data: imagf=1.
namlen - Name Length. Integer = number of characters in variable name + 1.

4.6.3 MATLAB “MAT” File Data Structure

The structure of the stored matrix data is described in the same section of the MATLAB manual
previoudly cited for the header structure. The size will of course vary depending upon how much
datais stored but there is always the data name followed by the real data and then optionally fol-
lowed by the imaginary data (if present).

MATLAB MAT Matrix Data Structure

variable real data Imaginary data
name (optional)

Figure 25-3 - Matrix data structure of a MATLAB MAT file.
The three sections are construcated as follows.
var. name- namlen ASCII bytes (characters). The last isa NUL (or 0).
reals - mrow* mcol double precision floating point numbers (8-bytes each).
imags - Stored identically asthe real data. Immediately following the last real point.

MATLAB matrices are stored column-wise (unless indicated otherwise by type). This means that
thefirst data point (immediatly after the variable name) will correspond to the matrix point (0,0).
The second point is (1,0), the third (2,0) and so on.

For agenera discussion on moving filesin and out of MATLAB see Importing and exporting data

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA MATLAB I/O
User Documenation Routines

72
4.5

in the Tutorial Chapter, Section 12 on page 2-83 in PRO-MATLAB August 1987 version.

Copyright Tilo Levante, Scott A. Smith May 22, 1998

GAMMA Felix 1/O 73
Graphics & 1/0

5 Feix1/O

5.1 Overview

The Felix I/O routines are provided to allow the transfer of spectrabetween aFelix? file and GAM-
MA. A few routines for reading files from the predecessor of Felix, FTNMR, are also included
here. Felix 1/0 routineswill be preferentially enhanced and users should attempt to replace the use
of FTNMR with Felix entirely. WARNING: Felix isafinicky program which is being constantly
atered by its creators. Thefile structures read and produced by Felix, if altered, may render many
(if not al) of these functions useless on later Felix versions.

5.2 Available Fdlix Functions

Reading and Writing Felix .dat Files

Felix - Write aFelix .dat file page 75
Felix_1D - Read a Felix .dat fileinto a GAMMA vector page 81
Felix_2D - Read a Felix .dat fileinto aGAMMA matrix page 82
Felix_header - Read the header of aFelix.dat file page 84
Felix_d cat - Read a concatenated Felix .dat file into a GAMMA matrix page 85
Reading and Writing Felix .mat Files
Felix_mat - Write aFelix .mat file page 90
Felix_mat_1D - Read aFelix .dat fileinto a GAMMA vector page 90
Felix_mat_header- Read a Felix .dat file into a GAMMA matrix page 91

5.3 Discussion of Felix

5.6.1 - Felix “.dat” File Structure page 92
5.6.2 - Felix “.dat” Data Structure page 94
5.6.3 - Felix “.mat” File Structure page 94
5.6.4 - Felix “.mat” File Header page 96
5.6.5 - Felix “.mat” Data Structure page 101

1. Felix isan NMR data processing program from Hare Research, Inc., 14810 216th Avenue NE, Woodinville,
WA, 98072, USA. Version 1.0 was used in preparation and testing of these subroutines. All examples were
performed on a SUN SPARCstation under SUNViews. Any references to the Felix manual isfor the March,
1990 copy.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O
Graphics & 1/0

74

54 Felix Figures& Tables

5.6.1 - Felix 1D Spectrum Output

5.6.2 - Felix 2D Spectrum Serial Output

5.6.2 - Felix 1D Spectrum Output

5.6.2 - Felix 1D Example Output

5.6.2 - Felix 2D Example Output

5.6.2 - Felix .dat File Structure

5.6.2 - Felix .dat File Header Structure

5.6.2 - Felix .dat File Header Structure

5.6.2 - Felix .mat File Structure

5.6.2 - Felix .mat File Header Structure

5.6.2 - Typical Matrices versus Felix .mat 2D Matrix
5.6.2 - General Felix .mat File Structure

5.6.2 - Felix .mat File Structure for 512x512 Real Matrix
Table 2: - Felix .mat File Header Scalar Parameters
Table 3: - Felix Matrices versus Felix Header Scalars
Table 4: - Felix .mat File Header Vector Parameters
Table 5: - Felix Matrices versus Felix Header Scalars
Table 6: - Felix .mat File Other Parameters

Table 7: - Felix Matrices versus Felix Header Scalars
Table 8: - Felix Matrices versus Felix Header Scalars

Copyright Scott A. Smith May 22, 1998

page 76
page 77
page 79
page 81
page 82
page 92
page 93
page 94
page 95

page 96
page 101

page 102
page 103
page 96
page 97
page 98
page 99

page 99
page 103

page 104

GAMMA

Feix 1/0 75

Graphics & 1/0

55 Routines

551

Usage:

Felix

#include <Felix.h>

void Felix (const char* filename, block_1D &BLK, int rc=1);
void Felix (const char* filename, block 2D &BLK, int rc=1);
void Felix (File &fp, block_1D &BLK, int rc=1, int reset=0);

Description:

Thefunction Felix is used to write Felix “.dat” (or serial) files. The data to be written in is contained in either
a one-dimensional or two-dimensional data bIBEK. The Felix output file is specified either by a file name
filename or by a pointer to an open filp. The parameterc specifies whether real or complex data is written.
For real,rc = 0, and for complerc=1. This will default to complex if left out of the function argument list.

1.

Felix (const char* filename, block_1D & BLK, int rc=1) - WhenFelix is invoked with this argument
list it writes the data contained in the 1-dimensional data Bbékto a newly constructed fifélename

in the Felix .dat format. Ifc is 1 (default) the data is written as complex numbers.if set to zero,

only the real data of the block is output. Any parameteBlid compatible with the Felix parameters
will be automatically transferred into the Felix file. The output file is closed upon the function return.
The function will overwrite any filéilename previously in existence.

Felix (const char* filename, block_2D & BLK, int rc=1) - This function is similar to the use above
(with 1D data blocks) but writes the data contained in the 2-dimensional dataBlhlKcK his is done
row-wise, i.e. first row 1 oBLK is written followed by row 2 and so on until the end of the daBdiK.

Felix (File&file, block_1D & BLK, int rc=1) - WhenFélix is invoked with this argument list it writes

the data contained in the 1-dimensional data bBBidK in the Felix .dat format to wherever the file point-
erfileis at. The file wheréleis pointing is assumed to be open (opened explicitly sometime prior to the
function call) and will remain open with the file pointer advanced to the file end at the function return.
The file should be closed externally as well. The flesgt tells the program whether or not to write any
header information. If you do not desire the header information to be written in the Felix .dat file then
this is inconsequential. If your program has not called a Felix function in connection with another file
then this is unimportant. If you want the header and have used function Felix earlier in your program to
generate a file then you must “reset” the Felix function to tell it the header should be output. For this,
reset is set to a non-zero number on the first, and only the first, function call (on the newly opened file
attached to fp).

Felix dat files are typically named with a “.dat” suffix so it is recommend that all filenames used for this func-
tion end with .dat. Furthermore, Felix has trouble recognizing capitol letters (at least in UNIX) so filenames
should be all lower case letters.

* Note: Felix has difficulties with real data. It is now mandatory that the user specifies the data set is real with-
in Felix itself.

Return Value:

Nothing. A new disk file in Felix “.dat” format is produced.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 76
Graphics & 1/0

Example 1.

For this first example the function is used to output a 1D NMR spectrum. The data block “data” is
filled with the simulated FID of a two spin system following a simple 90 degree pulse.

#include <gamma.h>

main ()

{

spin_system ab(2); /I Create a spin system with 2 spins
ab.shift(0,-700.5); /I Set chemical shift of fist spin to -700.5 Hz
ab.shift(1,+600); /[Second spin to 600 Hz

ab.J(0,1,20); /l Coupling to 20 Hz

gen_op sigma, H, detect; /I Declare the operators

sigma = sigma_eq(ab); /I Set the density matrix to equilibrium
H = Ho(ab); Il Set isotropic liquid Hamiltonian
detect = Fm(ab); /I Set the detection operator to F-
lock_1D data(2048); I/l Declare a block for data

sigma = lypuls(ab,sigma,P1/2); Il Apply a (P1/2) y pulse

FID(sigma, detect, H, 0.0005,2048, data); // Calculate the FID after the pulse
Felix(“felix.dat”, data); // Output the Felix .dat file

}

The last line of the program creates the file felix.dat readable by Felix. The file contains a complex
FID which is worked up in Felix to produce an NMR spectrum. The commands and spectrum (from
Felix) are shown below.

Felix 1D Spectrum Output

1. refelix.dat
2.1b5

3.em

4, ft

5. ref 1024
6. ax 2

oL N

s8cd0 ado I -aco -s00
H=

Figure 4-1 - Example program result from use of the GAMMA function “Felix”.

Copyright Scott A. Smith May 22, 1998

GAMMA
Graphics & 1/0

Feix 1/0 77

Example 2:

This example shows how the function is utilizes a2D-data array (either ablock 2D or amatrix) to
produce aFelix .dat file. To keep the program simple, the data block BLK isfilled with the product
of asinc and sinusoidal function.
#include <gamma.h>
main ()
{
block_2D BLK(256,256);
block_1D BLK1(256);
BLK1 =sinc(256, 128, 10);
for(int i=0; i<256; i++)
for(int j=0; j<256; j++)
BLK(i,j) = BLK1(i) * BLK1(j);
Felix(“felix.dat”, BLK);
}

As in the previous example, the last line of the program creates the file felix.dat readable by Felix.
Felix 2D Spectrum Serial Output

/I Declare a 2D data block

/I Declare a 1D data block

Il Set the 1D block to a sinc function

I/ Fill the 2D block with sinc(x)* sinc(y)

/I Write Felix .dat file (a serial file)

S O O0UU0UUCIUOU U O 3 78
°OOOO©@©@©©OQOOO ° N
~oOOOO@©@§2@@@OOOOO‘
o 0000000IIOBOO00 O o -
-0 000000O00LOCOO0O®O00 00 o -
o O OOOOOO@©© © @@@OOOOOO o 078
00 00000PO0O0OXI0ODOEOOO0 00 J A
0 0 0000ECOOENIITOO0OEOO000 0 _
0000EEO00VOUOIDDODOOOE®OCOO] |
DOEOOOO0OLOORITIIIDDOO0OOBOJ -+
D@@@@@@.@@@OCDO®@..©©©©©@C5f
DOOELOO0EIAE 0000DPEEOT —
N o
0808000000 B0E0E0NN0E s
000000000 EEE 9000eEee00e)
D@@@@@@..@@OCDO@@'.@@@@@@Q%N
DOEOOOO00OLVIIIDVNOOO00OEEO] = &
0000000 INDO0000®0 00
0 00000POOOEVIDIVDOOO®OO00 0]
0 000000EO0OUINO0OEOO00 00
o o OOOOOO@@@@ 00000000 0 o o &
o OOOOO@@©©©©®OOOOO o o
°©00000QORNLIDO®OO0CO0 0 -
0 0000O0DEO®O00C 0 o -
- 0000000OOO00 0 o
° 00 O@O O@OOOOp
50 100 150 200 250
D1 (po[mfg)

Figure 4-2 - Example program result from use of the GAMMA function “Felix”.

Copyright Scott A. Smith

May 22, 1998

GAMMA Felix 1/O 78
Graphics & 1/0

Each datarow is successively written so that Felix can read them in the .dat format. For the above
plot, felix.dat was read into a Felix matrix with a macro and then contoured. An hpgl output file
was then produced from Felix and transformed into encapsulated postscript(eps) with a program
provided by FrameMaker. The eps file was imported into this document (in FrameMaker) and re-
sized. The Felix macro which produced the matrix file is as follows (the comments off to the side
are not part of the macro) -

bld felix 2 256 256 1! build afelix 2D matrix, 256x256 real

mat felix.mat write! open the matrix created for writing

for row 1 256! loop through each row of the matrix

re felix.dat! successively read each row of the .dat file

red! set the row to be real, not complex

sto O &row! store the row in the matrix

typ row=&row! write to standard output this has been done

next! go back for the next row

end
Once this macro has been executed in Felix, the commands to produce the contour plot on the
screen aret -

Ivl 0.000000001! set contour level very low (10**8 lower than exptl.)

cpn 1! both positive and negative contours

nl 5! fivelevels

cli 1! geometrically progressing contours

clm 2.5! contours increment 250 percent

cp! draw the contour plot to the screen

To generate the hpgl contour plot file, the Felix commands are (once cp produces the screen plot)

hdv felix.hpgl! hardcopy deviceisfile felix.hpgl
hpm 32! hardcopy plot modeis hpgl
hcp! produce the plot

Finally to produce the encapsulated postscript file for importing into FrameM aker, the program
hpgltoeps provided by FrameMaker was used. Thisis done outside of Felix (in UNIX) and the
command was

hpgltoeps felix.hpgl felix.eps
and produced the file felix.eps that was incorporated for the plot on the previous page.

1. Felix version 1.0 seems to prefer that one draws 1D plots before 2D plots or it confusesitself on the plot
limits. Apparently loading arow (loa0 256) and drawing it (dr) then loading acolumn (loa 130 0) and drawing
it prior to the contour plot does something to help Felix figureitself out.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 79
Graphics & 1/0

Example 3:
This example demos use of function Felix in aloop, writing successive 1-D blocksto a serid file.

#include <gamma.h>

main ()
{
block_1D BLK1(128), BLKA(128), BLKB(128); // Create 3 1-D data blocks
BLK1 = Gaussian(128, 32, 42.46); I/ Set BLK1 to aGaussian
BLKA =sinc(128, 64, 12); /I Set BLKA toasinc
Filefp; /I Create afile
fp.open(“felix.dat”, io_writeonly, a_create); /I Open file with name felix.dat
for(int i=0; i<128; i++) I/l Loop over 128 points, filling
{ /l the block BLKB with a blend
BLKB = i*BLKA + (127-i)*BLK1; /I of the Gaussian and sinc then
Felix(fp, BLKB); /I write the result block to the
} /I file in Felix .dat format
fp.close(); Il Close the fife
}

Felix 1D Spectrum Output

y

(&)

40 50 12
D1 (po[mfg)

Figure 4-3 - Example program result from use of the GAMMA function “Felix” in a loop.

1. If this program were to continue and generate some other Felix .dat file using this same form of the function
Felix, the “reset” flag would have to be used on the first function call if any parameters are to be written to
the file. The same would be true in this program had any of the forms of function Felix been called previous
to where it is called in the loop. To set the “reset” status, the loop would then go from 1 to <128 and the first
row (0) output before the loop with Felix(fp,BLKB,1,1) where the last 1 tells the program to write the header
information. If this is not done, the header will simply not be written and the program still works fine.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 80
Graphics & 1/0

In this example the file felix.dat is produced from first opening the file then successively writing
128 1D datablocksto it. For the above plot, felix.dat wasread into a Felix matrix with amacro and
then appropriate parameters were set for a reasonable stack plot. An hpgl output file was then pro-
duced from Felix and transformed into encapsul ated postscript(eps) with a program provided by
FrameMaker. The eps file was imported into this document (in FrameMaker) and resized. The Fe-
lix macro which produced the matrix fileis asfollows (the comments off to the side are not part of
the macro) -

bld felix 2 128 128 1! build afelix 2D matrix, 128x128 real

mat felix.mat write! open the matrix created for writing

for row 1 128! loop through each row of the matrix

re felix.dat! successively read each row of the .dat file

red! set the row to bereal, not complex

sto 0 &row! store the row in the matrix

typ row=&row! write to standard output this has been done

next! go back for the next row

end

Once this macro has been executed in Felix, the commands to produce the contour plot on the
screen aret -

loa 0 128! |oad the last row of data

dr! have alook at the row on the screen
loa50 0! load the 50th column of data

dr! have alook at the column on the screen
dx 0.4! set the x-axis skew

dy 0.4! set the y-axis skew

sp! generate the stack plot on the screen

To generate the hpgl contour plot file, the Felix commands are (once cp produces the screen plot)

hdv felix.hpgl! hardcopy deviceisfile felix.hpgl
hpm 32! hardcopy plot modeis hpgl
hcp! produce the plot

Finally to produce the encapsulated postscript file for importing into FrameM aker, the program
hpgltoeps provided by FrameMaker was used. Thisis done outside of Felix (in UNIX) and the
command was

hpgltoeps felix.hpgl felix.eps
and produced the file felix.eps that was incorporated for the plot on the previous page.

1. Felix version 1.0 seems to prefer that one draws 1D plots before 2D plots or it confusesitself on the plot
limits. Apparently loading arow (loa0 128) and drawing it (dr) then loading a column (Ioa 50 0) and drawing
it (dr) prior to the stack plot does something to help Felix figure itself out. The manual claims at least one
should be done to set the scaling, but if not done half of the data matrix disappears

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 81
Graphics & 1/0

552 Felix_1D

Usage:
#include <Felix.h>
block_1D Felix_1D(const char* filename, int block=0);
Description:
Thefunction Felix_1D is used to read a 1-dimensional spectrum from a Felix “.dat” file. The Felix file name
is filename, typically something with a .dat suffix such as name.dat. The spectrum (assuming there are more
than one present in the file) is specified by the valu#azk which defaults to 0, the first spectrum. Note
that, for N total spectra, the spectra are indexed from [0, N-1].
Return Value:
Nothing. A block_1D is returned containing the specthliock from the Felix dat fildilename.
Example:
#include <gamma.h>
main ()
{
block_1D BLK = Felix(“felix.dat”); Il Get the first spectrum from felix.dat
FM_1D(“felix1.mif”, BLK); // Output spectrum to FrameMaker
BLK = Felix(“felix.dat”, 127); /Il Get the 128th spectrum in felix.dat
FM_1D(“felix2.mif”, BLK); // Output spectrum to FrameMaker
}
Felix 1D Example Output
120 /
100 Spectrum 1
80}
60
40}
201
UZ U4 U6 U8 1
100} Spectrum 127
S0
0 0.2 U.4 U.b U.8 1

Figure 4-4 - Example program result from use of the GAMMA function “Felix” to read a file.

The example readstwo 1_D spectrafrom a Felix .dat file. This was applied to the file which was

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 82
Graphics & 1/0

generated and plotted in Example 3 for the function Felix on an earlier page of this document.
5.5.3 Felix_2D

Usage:

#include <Felix.h>
block_2D Felix_2D (const char* filename, int rowi =0, rows =0);

Description:

Thefunction Felix_2D is used to read a 2-dimensional spectrum from a Felix “.dat” file. The Felix file name

is filename, typically something with a .dat suffix such as name.dat. The 2D spectrum can be only part of a
larger data set, either 2D or ND. To read a sub-matrix, the initial and number of rows to be read can be spec-
ified with the parameter®wi androws respectively. These both have default settings of zero to indicate that

the entire .dat file should be read as a single 2D matrix. If only rows is left O, it is assumed that the 2D matrix
should be filled with the data fronowi until the end of the file. Botitowi & rows must be positive.

Return Value:

Nothing. A block_2D is returned containing a data array from the Felix .dat file “filename”.

Example:
#include <gamma.h>
main ()
{
block 2D BLK; Il Create a 2-D data block
BLK = Felix_2D(“felix.dat”, 29, 79); /I Get the first spectrum from felix.dat
FM_stack(“felix.mif”, BLK. 0.3, 0.3); /I Output spectrum to FrameMaker
}

Felix 2D Example Output

Figure 4-5 - Example program result from use of the GAMMA function “Felix_2D".

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 83
Graphics & 1/0

In this example, spectra 30 through 80 in the Felix.dat file felix.dat are read into a 2D-data block.
A stack plot for FrameMaker is then output and shown above. The file was that used in Example
3 for the function Felix on an earlier page of this document.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 84
Graphics & 1/0

55.4 Felix_header

Usage:
#include <Felix.h>
void Felix_header (const char* filename);
Description:
Thefunction Felix_header isused for viewing the header information in a Felix file. Unlikeits predecessor,

FTNMR, the current version of Felix uses very little of the header information present. Felix does read the
header and perhaps more of the information present will be used in future versions.

Return Value:

Nothing. Felix header information is written to standard output.
Example:

#include <Felix.h>
#include <String.h>// Could just have used #include <gamma.h>

main ()
{
String filename; /I Declare a string for the filename
cout << “\n\tWhich Felix .dat File? *; /I Ask the user to give the filename
cin >> filename; /I Input the filename from the user
cout << “\n”; // Output a linefeed so screen stays nice.
Felix_header(filename); /I Output the header information in the file
cout << “\n”; // Output a linefeed so screen stays nice.
}

Below is a sample of the output to expect from this function from a typical Felix.dat file.

Which Felix .dat File ? felix.dat
Initial integer read for FORTRAN = 32772
Header Size in Complex Points = -4096

1. 4096 Number of Complex Points
2.1 Data Type = Complex

3.0 Transform State = FID

4.0 W2 Axis Type = None

5.0 W2-W1 Axis Equivalence
6.0 W1 Axis Type = None

7.0 Empty

8.0 Empty

9.0 Empty

10.0 Empty

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/0 85
Graphics & 1/0
11.0 Pointer to Comments
12.0 Length of Comments
13.0 Pointer to Raw Header
14.0 Length of Raw Header
15.0 Spectrometer Type
16. 0 Hz. W2 Spectral Width
17. 0 Hz W2 Spectrometer Frequency
18.0 W2 Reference Point
19. 4096 MHz. W2 Reference Frequency
20.0 W2 Reference Frequency Type
21. 0 Deg. W2 Zero Order Phase Correction
22. 0 Deg. W2 First Order Phase Correction
23.0 W?2 First Order Phase Correction
24. 0 Hz. W1 Spectral Width
25. 0 MHz. W1 Spectrometer Frequency
26.0 W1 Reference Point
27.0Hz. W1 Reference Frequency
28.0 W1 Reference Frequency Type
29. 0 Deg. W1 Zero Order Phase Correction
30. 0 Deg. W1 First Order Phase Correction
31.0 Reserved
32.0 Reserved

Final integer read for FORTRAN = 32772

555 Felix_d _cat

Usage:

#include <Felix.h>
block_2D Felix_d_cat(const char* filename, int IOout=0);

Description:

Thefunction Felix_d cat isused for reading a concatonated Felix .dat file, filename. Thisfunction issimilar
to thefunction Felix_2D but it ignores any (or multiple) headers found in thefile. Thisalows usersto blend
multiple .dat filesinto one by using standard UNIX file concatonation: cat filel.dat file2.dat > filename.
Once the concatonated datais an aGAMMA matrix it can be easily manipulated. The argument | Oout, if set
to non-zero, will write information to standard output about the concatenated file asit is being processed
One example of thisfunctions utility would beif acomputer simulation does not run to completion. The job
can be restarted in the middle and the two output Felix .dat file concatonated. This function can then effec-
tively reproduce the full file.

This function is also handy when one has multiple Felix .dat files which the user desires to manipulate these
together. The Felix write command (wr) isone meansto get Felix to output specific .dat files which can then

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 86
Graphics & 1/0

be blended together with this function.
Return Value:

Nothing. Felix header information is written to standard output.
Example:

The following program reads in a concatenated Felix.dat file, allows the user to manipulate it, the
outputsthe result into a FrameM aker stack plot. Note that the functionisused early in the program,
the rest of the code simply manipulates the data and spits out a FrameM aker plot.

include <gamma.h>

main (int argc, char* argvl[])

{

cout << “\n\tConcatonated Felix (.dat) File -> FrameMaker (.mif) Stack Plot\n”;

1l Read in Filename & Felix File

String filename; /I Name of spin system file
query_parameter(argc, argv, 1, /I Get filename from command
“\n\tFelix concatonated .dat filename? “, filename);// line or ask for it

block 2D BLK = Felix_d_cat(filename, 1); /I Read Concatonated Felix .dat File
Il Alter the Concatonated Matrix Dimensions If Desired

int nc = BLK.cols();
int nr = BLK.rows();
char yn;

cout << “\n\tThe Concatonated Data Matrix is “ << BLK.rows() << “ By “ << BLK.cols();

cout << “\n\n\tDo You Wish to Plot Only Some of the Columns [y/n]? *;
cin >>yn;

int ic=0, ncols=nc;

if(yn ==y

{

cout << “\n\tPlease Enter First Column Index [0, “ << nc-2 << *]. %
cin >> ic;

cout << “\n\tPlease the Number of Colums [2, “ << nc-ic << “]:
cin >> ncols;

}

cout << “\n\tDo You Wish to Plot Only Some of the Rows [y/n]? *;
cin >>yn;

int ir=0, nrows=nr;

if(yn =="y’)

{

cout << “\n\tPlease Enter First Row Index [0, “ << nr-2 << “]: *;

cin >>ir;

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 87
Graphics & 1/0

cout << “\n\tPlease Enter Last Row Index [2, “ << nr-ir << *]: %
cin >> nrows;
}
block 2D subBLK;
subBLK = BLK.get_block(ir,ic,nrows,ncols);
cout << “\n\tDo You Wish to Row Order Reversed [y/n]? “;
cin >>yn;
block 1D rowBLK1, rowBLK2;
int kswap;
if(yn =="y’)
for(int k=0; k<nrows; k++)
{
kswap = nrows-k-1;
if(kswap > k)
{
rowBLK1 = subBLK.get_block(k,0,1,ncols);
rowBLK2 = subBLK.get_block(kswap,0,1,ncols);
subBLK.put_block(kswap,0,rowBLK1);
subBLK.put_block(k,0,rowBLK2);

}

}
Il Output FrameMaker .mif Stack File
double xsize, ysize, xsinc, ysinc;
int rinc;
cout << “\n\tPlease Enter Stack Plot Width in cm (8.5in = 21.5cm):
cin >> xsize;
cout << “\n\tPlease Enter Stack Plot Height in cm (11in = 27.9cm): *;
cin >> ysize;
cout << “\n\tPlease Enter Stack Plot Row Increment [1, nrows-1]: ;
cin >> rinc;
cout << “\n\tPlease Enter X Increment in cm: “;
cin >> xsinc;
cout << “\n\tPlease Enter Y Increment in cm: “;
cin >> ysinc;
FM_stack(“stack.mif”, subBLK, xsinc, ysinc, rinc, xsize, ysize);

}

Concatonation of any two UNIX files is performed usingditecommand as indicated in the func-
tion description. Subsequently, the concatonated Felix file can be read by a simple or, as in our ex-
ample program, an elaborate GAMMA program. Worth mentioning is how to get Felix itself to

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 88
Graphics & 1/0

produce a concatonated Felix .dat file from one of its matrix (.mat) files. This can by done with the
following tricky but manageable macro (the comments off to the side are not part of the macro) -

get ‘First Matrix Row: ‘ rowi! get initial matrix row desired
get ‘Last Matrix Row: ‘ rowf! get final matrix row desired

for row &rowi &rowf! loop through matrix rows specified

loa 0 &row! load row into workspace

wr felblock.dat! write row to Felix .dat file named felblock.dat
sys felixcp! call to UNIX and concatonate with previous file
ty row = &row! echo that row is complete

next! go back for next row

end! exit the macro

After getting the matrix rows that the user wished concatonated, the macro loops through and
writes each block to the file “felblock.dat”. Unfortunately, Felix does not append each successive
block to what felblock.dat previously contained. It overwrites any data present so that at the end of
each loop the output .dat file contains only one block (plus its header). Thus the macro also contains
a call to the system to execute the command felixcp. Actually felixcp contains a couple of com-
mands which concatenate felblock.dat to anything output previously. The file felixcp contains the
following two lines (true UNIX commands):

cat subtot.dat felblock.dat > total.dat
cp total.dat subtot.dat

This first command concatenates the output Felix .dat file to the file subtot.dat and calls the result
total.dat. The second line copies total.dat back over subtot.dat. At the beginning of the macro both
subtot and total should be empty files and at end of the macro they will both contain all of the fel-
block.dat files concatenated together!

There are a few more things to know about this procedure. 1.) The files subtot.dat and total.dat must
exist and be empty at the start of the macro. The four commands will accomplish this:

rm subtot.dat
rm total.dat
touch subtot.dat
touch total.dat

2.) The file felixcp should have executable priviedges. This is done with the chmod command.
chmod u+x felixcp

3.) The file felixcp must reside in the default Felix directory. This will be the directory from which
Felix is executed from.

4.) The two data files (subtot and total) must be in the Felix data directory. This is set with the fol-
lowing felix command (don't forget to end with a slash):

pre dat /dir/subdir/

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 89
Graphics & 1/0

Thats all thereistoit. You work up you datain a Felix matrix to get it into adesired format then
execute the macro to spit out any need rowsinto a concatonated file. The following stack plot was
produced inthisfashion: 1.) GAMMA was used to perform asimulation (a decopuling experiment)
which output an unprocessed Felix .dat file. 2.) Felix was used to process the simulated datainto a
Felix .mat file. 3.) The Felix macro listed previously was used to output the Felix matrix file into
aconcatenated Felix .dat file. The GAMMA program listed previously was used to read in the con-
catonated file and output a FrameM aker stack file, shown below.

Felix Concatonation Example Output

|

|
|
g
%
‘\?

NG
|

g

e e . N
TN

- \‘\ il l_

|
&

—
/

|
1125 1100

v (Hertz)

Figure 4-6 - Example program result from use of the GAMMA function “Felix_2D".

Itis preferable to use the Felix matrix functions provided, but if they fail this function can be very
handy and perform the same feats with a bit of work.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O Q0
Graphics & 1/0

5.5.6 Felix_mat

Usage:

#include <Felix.h>
void Felix_mat(const char* filename, block_2D &BLK, int rc=1);
void Felix_mat(File &fp, block 1D &BLK, int rc=1, int reset=0);

Description:

Thefunction Felix_mat is used to write Felix “.mat” (or matrix) files. The data is contained in the data block
BLK. The file is specified either by a file naifiliename or by a pointer to an open fifp. The parametearc
specifies whether real or complex data is written. For real,0, and for complexc=1. This will default to
complex if left out of the function argument list.
1. Felix_mat (const char* filename, block_2D & BLK, int rc=1) - WhenFelix is invoked with this argu-
ment list it writes the data contained in the 2-dimensional data Blokkto a newly constructed file
filename in the Felix .mat format. ifc is 1 (default) the data is written as complex numbers.if set
to zero, only the real data of the block is output. Any paramet®&isKncompatible with the Felix pa-
rameters will be automatically transferred into the Felix file. The file is closed upon the function return.
The function will overwrite any filéilename previously in existence.
2. Felix (File&fp, block_1D &BLK, int rc=1) - WhenFelix is invoked with this argument list it writes
the data contained in the 1-dimensional data bRicK in the Felix .mat format to wherever the file
pointerfp is at. The file wherép is pointing is assumed to be open (opened explicitly sometime prior to
the function call) and will remain open with the file pointer advanced to the file end at the function return.
The file should be closed externally as well. The flesgt tells the program whether or not to write any
header information. It is mandatory that the header information be present in the Felix .mat file (unlike
a Felix .dat file where the header can be absent). This will be done automatically if your program has not
previously called a Felix_mat function in connection with another file. If it has, then youessighis
Felix_mat function to tell it the header should be output. Forrse is set to a non-zero number on
the first, and only the first, function call to Felix_mat(on the newly opened file attach@d to
Felix mat files are typically named with a “.mat” suffix so it is recommend that all filenames used for this
function end with .mat. Furthermore, Felix has trouble recognizing capitol letters (at least in UNIX) so file-
names should be all lower case letters.

Return Value:

Nothing. A new file is produced in Felix .mat format.

Example:
55.7 Felix_mat_1D

Usage:

#include <Felix.h>
block_1D Felix_mat_1D (const char* filename, int block=0);

Description:

The function Felix_mat_1D is used to read a 1-dimensional spectrum from a Felix “.dat” file. The Felix file
name is “filename”, typically something with a .dat suffix such as hame.dat. The spectrum (assuming there

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 91
Graphics & 1/0

are more than one present in the file) is specified by the value of “block” which defaults to 0, the first spec-
trum. Note that, for N total spectra, the spectra are indexed from [0, N-1].

Return Value:

Nothing. A block_1D is returned containing the spectrum “block” from the Felix dat file “filename”.
55.8 Felix_mat_header

Usage:
#include <Felix.h>
void Felix_mat_header(const char* filename, int verbose=0);
Description:
The functionFelix_mat_header is used for viewing the header information information in a Felix .mat file.
The file name is input bfilename and the amount of information to send out increases with the magnitude

of the integererbose. There are 4096 integer length bits of information present in the header so the output
can be quite long if verbose is set to maximim(>=10).

Return Value:

Nothing. Felix header information is written to standard output.

Example:

#include <gamma.h>

main ()
{
String filename; /I Declare a string for the filename
cout << “Which Felix .mat File ? *; /I Ask the user to give the filename
cin >> filename; /I Input the filename from the user
cout << “\n\n”; /[Output two linefeeds so screen stays nice.
Felix_mat_header(filename); // Output the header information in the file
}

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 92
Graphics & 1/0

5.6 Description

5.6.1 Felix “.dat” File Structure

Each Felix .dat fileisaserial type of file, i.e. aseriesof 1D spectrastacked one after another which
we will refer to as blocks. At the beginning of each block are two integers. Thefirst isused for
structured 1/0 in FORTRAN (which Felix uses). The second is aflag asto whether or not the data
in the block is spectral data (positive integer) or parameter data (negative integer). The absolute
value of this second integer will be the number of complex pointsin the block, SIZE. Thereisno
particular limit as to how many blocks are contained in aFelix .dat file (probably al data blocks
should be of the same length). Each block also endswith an integer, again the result of FORTRAN
sutructured 1/0.

Felix .dat File Structure

A |+-SIizg| O 1 e SIZE-2 | SIZE-1 A
A -SIZE 0 1 S SIZE-2 | SIZE-1 A
A SIZE 0 1 SIZE-2 | SIZE-1 A
A SIZE 0 1 oo SIZE-2 | SIZE-1 A

Figure 4-7 - File Structure of an Felix .dat file. There are SIZE complex points per each 1D spectrum.
The integer A, which starts and ends each row, is used for FORTRAN structured 1/O within Fe-
lix. The second integer of each row, +/- SIZE, if negative indicates that the row contains param-
eter information. The first data point of the row is indexed 0 and the last indexed size-1.

Felix “.dat” Header Structure - The first block in a Felix .dat file may contain parameters, not spec-
tral data. This is indicated by the second integer in the block having a negative value. A header
block can be of any size but normally (a Felix default) it will contain 32 complex values (64 floats
or 64 integers). This default structure is shown in the following diagram.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 93
Graphics & 1/0

Felix .dat File Header Structure

A -SIZE 0 1 oo SIZE-2 | SIZE-1 A

A 32 Parameters (0-15 complex) AAOther Info, Comments (16, size-l)‘

DSIZE RIF | 1r | 1i eros 14i 15r | 15i

Figure 4-8 - Header Structure of an Felix .dat file. The first 16 complex points are used to store 32
parameters, either integer or real. The locations after this may be used for any additional pa-
rameters or comments. Although the program reads this information, Felix should be trusted
only to use the 1st and 2nd parameters, the value of DSIZE and whether the data is real (RIF=0)
or complex(RIF=1). Note that DSIZE in the header sets the number of points (real or complex)
that Felix expects to read in ensuing data blocks, regardless of how much storage (SIZE) the

block actually uses.

In principle, Felix uses the information contained in the header to set spectral parameters. In prac-
tice, some versions of Felix seem to have trouble maintaing this information (in the way that FT-

NMR utilized it).

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O A
Graphics & 1/0

5.6.2 Felix “.dat” Data Structure

For all data blocksin a Felix .dat file the value stored in SIZE will always indicate the number of
complex pointsstored intheblock. A datablock may contain either real or complex points, but this
information is contained in the previous header block - thefirst non-datablock inthe .dat file. Also
contained in the previous header block is the value DSIZE, the actual number of data points that
Felix expectsto obtain from the data block. Again, thisinformation isindependent from the value
of SIZE. The number of data points used from a given block may actually be far lessthat the num-
ber of points stored in the bl ock?. If the header hasfl agged the dataas complex, the information is
(expected to be) stored point-wise, that isre, im, re, im, , until the end. If the data contained in
the block isreal the pointsare stored in order, that isre, re, re, , until theend. Thevalue DSIZE
set by the previous header tells Felix how many pointsto take out of the data block. Thisvalueis
the number of complex points to take when the data is complex and the number of real pointsto
take when the datais real (unlike SIZE which is always assuming storage for complex poi nts)z.
Note: If no header exists (optional in Felix .dat files) the data is taken as complex and
DSIZE=SIZE.

Felix .dat File Header Sructure

A SIZE 0 1 o r SIZE-2 | SIZE-1 A
COMPLEX Zy Al o ZgzE2 | ZsizE1
e e e e e . 1251ZE-4+ | T251ZE-2s
REAL foly | a3 l2s1zE-3 | M2sizE-1

Figure 4-9 - Data Structure of an Felix .dat file. There are SIZE complex points or 2*SIZE individual
real points. Complex points are stored real then imaginary. The storage of all reals versus com-
plex is specified by the second parameter in the header. Felix may not use all of these points,
that depends upon what the value of DSIZE was set to in the previous header block.

5.6.3 Felix “.mat” File Structure

Each file .mat internally consists of aheader followed by the spectral data. Unlike a.dat file, there
must be one (and only one) matrix header in each .mat fileresiding at the start of thefile. It contains
all parametersassociated with the data set and isablock of integers, floats, and charactersof length
4096. The matrix data points follow immediately after the header.

1. Why thisis allowed isamystery, asit wastes disk space. Fortunately, the number of points expected will not
exceed the number which are stored!
2. This deviates from the program FTNMR. FTNMR always needs the number of complex points.

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/0 95
Graphics & 1/0
Felix .mat File Structure
0 1 2 1C I [HEADER 4093 | 4094 | 4095

MATRIX DATA

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 9%
Graphics & 1/0

5.6.4 Felix “.mat” File Header

As shown in the previous figure, the start of aFelix .mat file contains 4096 storage locations for
parameters. These points are subdivided into four parts as shown in the following figure.

Felix .mat File Header Structure

0 1 2 3 o o 4093 | 4094 | 4095
Scalars
0 1 2 3 4 5 6 7 8 9
Other
100 | 101| 102} 103 - - - SS oo 4092 | 4093 | 4094
Last Point
4095

Figure 4-10 - Header Structure of an Felix .mat file. Note that the index in FORTRAN (the language
in which Felix is written) is shifted by +1 realative to the standard C indexing used in GAMMA,
that is vectors start at 21 and end at 100, etc.

Scalars- The initial header parameters are “scalar” parameters in that they are global matrix val-
ues, not assignable to any specific matrix dimension. For example, the flag indicating whether the
data points are complex or real resides here. The following table describes these parameters.

Table 2: Fdlix .mat File Header Scalar Parameters

Point Description of Scalar Paramters Values Variable
0 Matrix Dimensions Min =2, Max =8
1 Matrix Data Type 1 = Real, 2 = Compleix
2 Total Number Bricks in the Matrix Includes 1 for Header
3 | Bricks to Span Matrix Row Blo&k
4 Unknown Usually O

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/0 97
Graphics & 1/0
Table 2: Felix .mat File Header Scalar Parameters
Point Description of Scalar Paramters Values Variable
19 Unknown Usualy 0

a. A Felix .mat “Brick” is defined to be 4096 (4K) floating points.
b. A Felix .mat “Block” contains 64 floating points. This value is the number of Bricks which contains

64 matrix rows.

In most Felix .mat files (that the author has looked at) only the first four scalar values are present
in the header. Below isabrief table of the first for scalar parameters found versus the matrix gen-

erated from the Felix bld command.

Table 3: Felix Matrices versus Felix Header Scalars

Felix bld Scalar 0 Scalar 1 | Scalar 2 | Scalar 3 | Matrix | Matrix
Command Dimensions | Type Bricks | Blocks | Filesize | Points
bld test 25125120 2 1 65 8 1064960 | 262144
bldtest 25125121 2 2 129 16 2113536 | 524288
bld test 2 256 512 0 2 1 33 8 540672 | 131072
bld test 2 512 256 0 2 1 33 8 540672 | 131072
bld test 2 256 512 1 2 2 65 8 1064960 | 524288
bld test 2 512 256 1 2 2 65 8 1064960 | 524288
bld test 2 32 1024 0 2 1 9 4 147456 | 32768
bld test 21024 32 0 2 1 9 4 147456 | 32768
bld test 2 32 1024 1 2 2 17 4 278528 | 65536
bld test 21024 32 1 2 2 17 4 278528 | 65536
bld test 2 32 32 2 1 2 1 32768 1024
bldtest 3323280 3 1 5 2 81920 | 8192
bldtest 3328320 3 1 5 2 81920 8192
bldtest3832321 3 2 5 2 81920 16384

As seen from the above table, the number of stored dimensions and the matrix datatypeisstraight-
forward. A Felix brick isdefined to be 4K real points, so the number of bricks can be determined
by dividing the total matrix points by 4096 and adding in the header brick. The number of bricks

Copyright Scott A. Smith

May 22, 1998

GAMMA Felix 1/O 98
Graphics & 1/0

which Felix uses can thus usually be determined by the formula
bricks = [(rpts/4096) + 1]

where rpts is the total number of real data points in the matrix. For smaller 2D arrays, the mini-
mum value of bricks allowed by Felix is2, i.e. the smallest Felix .mat file takes up 32768 bytes.
One can easily determine the size (in bytes) of the .mat file from the equation

filesize = bricksx 4096x 4
where there are 4K real pointsin abrick and 4 bytes per point.

Vectors - Following the scalar paramters, the header contains a series of “vector” parameters.
These parameters are always clustered in groups of nd where nd is the number of dimensions in the
matrix. For example, the first vector parameter flags the data is real or complex for each dimension.
For a 2-dimensional real matrix there will be two successive 1's stored and For a 3-dimensional
real array there will be 3 successive 1's stored. Obviously, where the storage of each vector param-
eter occurs in the header depends on how many matrix dimensions exist. The following table de-

scribes the vector parameters.

Table 4: Felix .mat File Header Vector Par ameters

Point Description of Vector Parameters Values

Copyright Scott A. Smith May 22, 1998

GAMMA
Graphics & 1/0

Felix 110

99

Below isabrief table of what Felix storesfor itsvector parametersrelative to the matrix generated
from the Felix bld command.

Table5: Felix Matrices versus Felix Header Scalars

Felix bld Vector O | Vector 1 | Vector 2 | Vector3 | Vectord | Vector5

Command Points | Bricks | Brick Index | Blocksize | Block Index
bldx 25125120 1,1 512,512 8,8 1,8 64, 64 1,64
bldx 2512512 1 1,1 512,512 8, 16 1,8 64, 32 1,64
bld x 2 256 512 0 1,1 256, 512 4,8 1,4 64, 64 1,64
bldx 2512256 0 1,1 512, 256 8,4 1,8 64, 64 1,64
bld x 2 256 512 1 1,1 256, 512 8,8 1,8 32,64 1,32
bld x 2512 256 1 1,1 512, 256 8,8 1,8 64, 32 1,64
bldx 23210240 1,1 32,1024 2,4 1,2 16, 256 1,16
bldx 21024 320 1,1 1024, 32 4,2 1,4 256, 16 1,126
bldx 2321024 1 1,1 32,1024 4,4 1,4 8, 256 1,8
bldx 21024 32 1 1,1 1024, 32 4,4 1,4 256, 8 1,126
bldx 3323280 1,1,1 [32,32,8] 221 1,24 16, 16,16 | 1, 16, 256
bldx 3328320 1,1,1 (32,832 21,2 1,22 16, 16,16 | 1,16, 256
bldx3832321 1,1,1 (832,32 1,22 1,1,2 8, 16, 16 1,8, 128

Other Parameters - Following the vector parameters, the header contains various other param-
eters which track filenames, etc. The following table describes the other parameters and the last
parameter in the header.

Table 6: Falix .mat File Other Parameters

Point Description Values
Other
101 Total Number of Bricksin Data (Matches Par. 2) | Includes 1 for Header
111 Number of Charactersin .mat File Filename l1<=nch<=7?
112 First Character in Filename ASCII character
113 Second Character in Filename ASCII character

Copyright Scott A.

Smith

May 22, 1998

GAMMA Feix 1/0

100
Graphics & 1/0
Table 6: Felix .mat File Other Parameters
Point Description Values
111+nch Last Character in Filename ASCII| character
220 First Character of 1st Dimension Reference Text Default = ‘D’
221 2nd Character of 1st Dimension Reference Text Default = ‘1’
222 First Character of 2nd Dimension Reference Text Default = ‘D’
223 2nd Character of 3rd Dimension Reference Text Default = 2’

220+nd-1 | First Character of Last Dimension Reference [Text Default = ‘D’

220+nd 2nd Character of Last Dimension Reference Text Default = nd

Last Point

4095 Status Flag 0 = Bad, 1=Good

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/O 101
Graphics & 1/0

5.6.5 Felix “.mat” Data Structure

The matrix data points follow immediately after the Felix .mat header. These points are not stored
in the typical matrix row - column fashion oneis accustomed to. Rather, Felix uses aninternal sub-
block storage scheme which can make both matrix column and row access relatively quick®. We
will begin this discussion talking about the more familar 2-dimensional arrays since even with
these conceptually easier structures it is difficult to see what Felix is doing.

Thefirst thing to noteisthat Felix does not associate its dimensions with rows or columns. Thisis
immediately evident to anyone who has plotted a non-square array with the program. Usually, an
mxn matrix isthought to contain m columns and n rows - and when sketched out on paper it ap-
pears just that way. Not so for Felix arrays! Felix plots dimension 1 horizontally and dimension 2
vertically - the exact opposite of common matrix nomenclature. This can be seen in the following
diagram.

Typical Matrices versus Felix .mat 2D Matrix

256 x 512 bld 2 256 512 bld 2 512 256
Matrix 2-D Matrix 2-D Matrix
- columns > - D1 -
-
D1

Also unlike the Felix .dat file, matrix files have ablock unit which is set to be of length 4096 for
al .mat files. Thus, the first block is the parameter header.

1. A datamatrix iscommonly (for examplein FORTRAN) stored column-wise: <1|1>, <2|1>, <3|1>, ..., <n|1>,
<2|1>, <2|2>, ... <n|n>. Accessing a column with this storage scheme needs one disk seek followed by suc-
cessive elements being rapidly read. Accessing arow then requires a disk seek for each element and is thus
much slower. (For amatrix stored row-wise the opposite logic holds.) By using asub-matrix storage scheme,
both row and column access will be faster that the row read of the typically stored matrix, the tradeoff being
both are slower that row read of common storage method. The bottom lineisthat if you assume you will be
processing both rows and columns of the matrix alot the latter storage will always seem reasonably fast
whereas the simpler storage will probably seem unbearably slow whenever the less favorable access is need-
ed..

Copyright Scott A. Smith May 22, 1998

GAMMA Feix 1/0 102

Graphics & 1/0

General Felix .mat File Sructure

0 1 2 3 oo 4093 | 4094 | 4095

Thereisalso alarger structure in the matrix files, called abrick, which clusters together several
blocks. A brick isused to easily jump from one matrix point to the next in any of the matrix dimen-
sions. We will use two examplesto illustrate the brick/block matrix structures. The following fig-
ure outlines the storage of a matrix constructed by the Felix command bld x 2 512 512 0. Felix
stores these pointsin 64 point clumps, the first clump belonging to elements which would be read
by the Felix command loa 0 1 (arow in standard matrix nomenclature). The the next clump con-
tains the first 64 elements which would be read by loa 0 2, and so on until the entire 4K block is
filled up. It isthe second block which contains the second set of 64 point clumpsfor all of these
(rows) and since dimension 1 spans 512 points it takes 8 complete blocks to span the vectors ob-
tained by loa 0 1 through loa 0 64. Thisis abrick. The data obtained from loa 0 65 begins at the

start of the second brick, at the 8th block (0-7 allotted to brick 0).

Copyright Scott A. Smith May 22, 1998

GAMMA Feix 1/0 103

Graphics & 1/0

Felix .mat File Sructure for 512x512 Real Matrix

4093 | 4094 | 4095

00| 01| 02| 03 061 | 062 | 0,63

161 | 162 | 163

10| 11 | 12 | 13

63,61 | 63,62 | 63,63

064|065| 01 | 01 0,125 | 0,126 | 0,127

1,125 | 1,126 | 1,127

164 | 165 | 1,65 | 1,65

63,125 | 63,126 | 63,127

448,448 448,449| 448,450/ 448,451 448,509448,510| 448,511

449,509/449,510| 449,511

449,448 449,449|449,450(449,451

511,509|511,510 511,511

Figure 4-11 - Header Structure of an Felix .mat file. Note that the index in FORTRAN (the language
in which Felix is written) is shifted by +1 realative to the standard C indexing used in GAMMA,

that is vectors start at 21 and end at 100, etc.
Below isabrief table of the first for scalar parameters found versus the matrix generated from the
Felix bld command.
Table 7: Felix Matrices versus Felix Header Scalars

Felix bld Scalar 0 Scalar 1 | Scalar 2 | Scalar 3 | Matrix | Matrix
Command Dimensions | Type Bricks | Blocks | Filesize | Points
bld test 2512512 0 2 1 65 8 1064960 | 262144
bld test 2512512 1 2 2 129 16 2113536 | 524288

Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/0 104
Graphics & 1/0
Table 7: Felix Matrices versus Felix Header Scalars
Felix bld Scalar 0 Scalar 1 | Scalar 2 | Scalar 3 | Matrix | Matrix
Command Dimensions | Type Bricks | Blocks | Filesize | Points
bld test 2 256 512 0 2 1 33 8 540672 | 131072
bld test 2 512 256 0 2 1 33 8 540672 | 131072
bld test 2 256 512 1 2 2 65 8 1064960 | 524288
bld test 2 512 256 1 2 2 65 8 1064960 | 524288
bld test 2 32 1024 0 2 1 9 4 147456 | 32768
bld test 21024 32 0 2 1 9 4 147456 | 32768
bld test 2 32 1024 1 2 2 17 4 278528 | 65536
bld test 21024 32 1 2 2 17 4 278528 | 65536
bldtest 3323280 3 1 5 2 81920 8192
bldtest 3328320 3 1 5 2 81920 8192
bldtest3832321 3 2 5 2 81920 16384

As seen from the above table, the number of stored dimensions and the matrix datatypeis straight-
forward. The number of bricks which felix uses can be determined by the formula

bricks = [(rpts/4096) + 1]

whererpts isthetotal number of real pointsin the matrix. The minimum value of bricks allowed
by felix is 5, i.e. the smallest Felix .mat file takes up 81920 bytes. One can easily determine the
size of the .mat file from the following equation,

filesize = bricks x 4096 x 4

where there are 4K real pointsin abrick and 4 bytes per point.

Below isabrief table of what Felix storesfor itsvector parameters rel ative to the matrix generated
from the Felix bld command.

Table 8: Felix Matrices versus Felix Header Scalars

Felix bld Vector O | Vector 1 | Vector 2 | Vector 3 Vector4 | Vector 5
Command Points | Bricks | Brick Index | Blocksize | Block Index
bldx 2512 512 0 1,1 512,512 8,8 1,8 64, 64 1,64
bldx 2512512 1 1,1 512,512 8, 16 1,8 64, 32 1,64
bld x 2 256 512 0 1,1 256, 512 4,8 1,4 64, 64 1,64
Copyright Scott A. Smith May 22, 1998

GAMMA Felix 1/0 105
Graphics & 1/0
Table 8: Felix Matrices versus Felix Header Scalars
Felix bld Vector O | Vector 1 | Vector 2 | Vector 3 Vector4 | Vector 5
Command Points | Bricks | Brick Index | Blocksize | Block Index
bldx 2512 256 0 1,1 512, 256 8,4 1,8 64, 64 1,64
bldx 2 256 512 1 1,1 256, 512 8,8 1,8 32,64 1,32
bldx 2512 256 1 1,1 512, 256 8,8 1,8 64, 32 1,64
bldx 23210240 1,1 32,1024 2,4 1,2 16, 256 1,16
bldx 21024 320 1,1 1024, 32 4,2 1,4 256, 16 1, 126
bldx 2321024 1 1,1 32,1024 4,4 1,4 8, 256 1,8
bldx 21024321 1,1 1024, 32 4,4 1,4 256, 8 1,126
bldx 3323280 1,1,1 | 32,32,8| 2,2,1 1,2,4 16,16, 16 | 1,16, 256
bldx 3328320 1,1,1 | 32,8,32| 21,2 1,2,2 16,16, 16 | 1, 16, 256
bldx3832321 1,1,1 18,3232 | 1,22 1,1,2 8, 16, 16 1, 8,128
Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 106
User Documenation Overview 6.1

6 NMRIil/O

6.1 Overview

The NMRI 1/O routines are provided to allow the transfer of data between GAMMA and the pro-
grams NMR1 and NMR2L,

6.2 Available NMRI Functions

NMRI - Write an NMRi file page 106
NMRi_1D - Read an NMRIi fileinto a GAMMA vector page 108
NMRi_2D - Read an NMRi fileinto a GAMMA matrix page 108
NMRi_header - Read the header of an NMRi file page 109
6.3 Routines

6.3.1 NMRI

Usage:

#include <NMRi.h>

void NMRi (const char* filename, block_1D &BLK, int rc=1);
void NMRi (const char* filename, block 2D &BLK, int rc=1);
void NMRi (File &file, block_1D &BLK, int rc=1, int zero=0);

Description:

Thefunction NMRIi isused to writefilesin the standard NMRi format. The datais contained in the data block
“BLK". The file is specified by either the name “filename” or by the file pointer “file”. The parameter “rc”
indicates whether to write real or complex(default) data. If rc is 0, only the real data will be output. If rc is
negative, only the imaginary data is written (as reals), and if rc>0 the complex data is written.

1. NMRI (const char* filename, block_1D &BLK, int rc=1) - WhBiMRI is invoked with this argument
list it writes the data contained in the 1-dimensional data block “BLK” to a newly constructed file “file-
name” in the NMRi format. If rc is 1 (default) the data is written as complex numbers. If rc is set to zero,
only the real data of the block is output. Any parameters in BLK compatible with the NMRi parameters
will be automatically transferred into the NMRi file. The file is closed upon the function return. The func-

1. NMR1 and NMR2 are a products of New Methods Research, Inc., 7 East Genesee Street, Syracuse, NY,
13210. Phone: (315) 424-0329, FAX: (315) 424-0356. GAMMA was tested on Sun systems running the Sun-
views operating system. NMR1 release 3.8 and NMR2 release 3.5 were the manuals referred to during the
programming.

Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 107
User Documenation Routines 6.3

tion will overwrite any file “filename” previously in existence. No other NMRi file should be open during
the calling of this function.

2. NMRIi (const char* filename, block 2D &BLK, int rc=1) - This function is similar to the use above (with
1D data blocks) but writes the data contained in the 2-dimensional data block “BLK”. This is done row-
wise, i.e. first row 1 of BLK is written followed by row 2 and so on until the end of the data in BLK.

3. NMRI (File &file, block_1D &BLK, int rc=1) - WhemNMRi is invoked with this argument list it writes
the data contained in the 1-dimensional data block “BLK” in the NMRi format to wherever the file point-
er “file” is at. The file where “file” is pointing is assumed to be open (opened explicitly sometime prior
to the function call) and will remain open with the file pointer advanced to the file end at the function
return. The file should be closed externally as well. The NMRi parameter block is updated with each
function call. An optional parameter in this function is “zero” which, if non-zero, will set the count of 1D
spectra present in the NMRi file to zero. This is done automatically in most instances but should be used
if multiple NMRi files are to be produced in a single program run it is necessary to re-zero the count when
writing the first spectrum of all NMRi files.

Note that NMRi can be called with a matrix instead of a block_2D or a row_vector rather than a block_1D.

In these instances the parameter sets are not fully written into the NMRi file.

Return Value:

Nothing when producing a NMRi file.
Example:

#include <gamma.hc>

main ()

{

block_1D BLK1(128); /I Define a 1D-data block

BLK1 = Gaussian(128, 64, 42.46); Il Set 1D-block to Gaussian
NMRi(“NMR1D.tst”, BLK1); // Output 1D BLK to NMRi file
block_2D BLK2(128,128); // Define a 2D-data block

for(int i=0; i<128; i++) /I Fill 2D block with 2D-Gaussian

for(int j=0; j<128; j++)
BLK2(i,j) = BLK1(i)*BLK1());
NMRIi(“NMR2D.tst”, BLK2); // Output 2D BLK to NMRi file
File fp; /I Specify a file pointer
fp.open(“NMRND.tst",io_writeonly
,a_create); // Open file NMRND.tst
block_1D BLKA(128), BLKB(128); // Define two more 1D-data blocks

BLKA = sinc(128, 64, 12); /I Set block to sinc function
BLKB = 127-i * BLK1,
NMRi(fp, BLKB, 0, 1); /I Last 1 needed as previous NMRi files used
for(i=1; i<128; i++) // Output 128 1D blocks to NMRi file
{ /I only the reals are output here

BLKB = i*BLKA + (127-i)*BLK1;

Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 108
User Documenation Routines 6.3

NMRi(fp, BLKB, 0);

}
fp.close(); I/ Close file NMRND.tst

}

Thelast NMRI file produced, NMRND.tst, was made by first opening afile, successively writing 1D spectra
toit, then closing the file. Since this program accessed NMRi files previously (during the creation of
NMR1D.tst and NMR2D.tst) thefirst spectrum wasindependently written outside the loop with the zero flag
set when calling NMRIi. This sets the internal counter to zero, something unnecessary had NMRi files not
been previously created in the program.

632 NMRi_1D

Usage:

#include <NMRi.h>
block_1D NMRIi_1D (const char* filename, int spectrum=1);

Description:

Thefunction NMRi_1D isusedtoread a 1D spectrum froman NMRi file, thatis, afilein the standard NMRi
format. The NMRi file name is “filename”. Returned is an 1D-data block containing the parameters in the
NMRiI file along with the spectrum chosen with “spectrum”. The default spectrum will be the initial one.

Return Value:

A one dimensional data block.
Example:

633 NMRi_2D

Usage:

#include <NMRi.h>
block_2D NMRIi_2D (const char* filename);

Description:
The function NMRi_2D is used to read a 2D spectrum from an NMRi file, that is, a file in the standard NMRi
format. The NMRi file name is “filename”. Returned is an 2D-data block containing the parameters in the
NMRiI file along with the entire 2D spectrum.

Return Value:

A two dimensional data block.

Example:

Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 109
User Documenation Routines 6.3

6.3.4 NMRI_header

Usage:
#include <NMRi.h>
ostream& NMRi_header (const char* filename, int verbose=0);
Description:
The function NMRi_header is used to quickly read the header information contained inan NMRi file. The
NMRIi file name is “filename”. The header contains 512 pieces of information, only some of which is partic-
ularly useful outside of the NMRi programs themselves. The integer verbose specifies how much of this in-

formation should be returned. The default value of O returns the minimal amount of information, the amount
increases as verbose increases up to 10. The header is returned in an output stream.

Return Value:

None, the function sends information to standard output
Example:

#include <gamma.h>

main ()

{

String filename; /l Declare a string

cout << “Which Levy File ?7; /I Ask for filename

cin >> filename; /I Input filename

int verbose,; I/l Declear an integer

cout << “\nHow verbose ?”; /I Ask for verbose level

cin >> verbose; /l Input verbose level

cout << “\n\n”; /[Output line feed (so screen is nice)
NMRi_header(filename, verbose); /[Output the header info in filename
}

Inthis example, the user is queried for the file and the amount of information should be returned. The default
value of 0 returns the minimal amount of information, the amount increases as verbose increases up to 10.
The header information is returned to the standard output stream.

Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 110
User Documenation Routines 6.3

6.4 Description

NMRi File Sructure - NMRi files begin with a header which contains 512 parameters describ-

ing the spectral data. A 1D-spectrum of length “SIZE” is written immediately after the header, all
real values followed by all imaginary values. If the data is not complex, the imaginary values are
absent from the file. A two (or multi-) dimensional spectrum is successive 1D-spectra sharing the
same header information, as depicted in the figure below.

NMRIi File Structure

Header

Spectrum 2 SIZE Reals
Spectrum 2 SIZE Imaginaries

Spectrum SPECNUM SIZE Reals
Spectrum SPECNUM SIZE Imaginaries

Figure 25-1 - Overall file structure of a NMRi file containing
SPECNUM 1D complex spectra each of length SIZE.

This file structure is described in the NMRi manuaB ONE NMR2, USER MANUAL, Release
3.5 on page 29.

NMRi Header Sructure - A full listing of the parameters contained in the header is given in

the NMRi manualLAB ONE NMR1, USER MANUAL, Release 3.8 on page 1-37. Of the 512 pa-
rameters it contains, few are useful outside of the NMRi programs. Those absolutely required are
given in the NMR2 manual (cited previously) on page 28 and listed here.

* 100 - First dimension size. This is SIZE in Figure 25-1

« 101 - First dimension spectral width.

« 107 - Data type: 0.0=quadrature, 1.0=singulature, 2.0=singulature sorted.
« 220 - Second dimension size. This is SPECNUM in Figure 25-1

* 230 - Second dimension spectral width.

Copyright Scott A. Smith May 22, 1998

GAMMA NMRi I/O 111
User Documenation Routines 6.3

For consistency with the program description found in the supplied manuals, thefile structure will
be briefly discussed in terms of blocks, each block being of length 64%. Thusthe header takes up4
blocks.

NMRi Header Structure

0 1 2 3

Figure 25-2 - Header Structure of a NMRi file. The header is
conceptually divided into 4 blocks, each containing 64 param-
eters.

NMRi Data Structure - The actual data startsimmediately after the header. In afile containing mul-
tiple spectra (i.e. a 1D spectrum) each spectrum must be of the same size and this size must be a
power of 2 (64, 128, 256,). If the any spectrum does not meet this latter requirement it will be
padded with zeros until the size is a power of 2. Furthermore, they must all be real or al be com-
plex.

NMRi Data Sructure

SIZE Reals
SIZE Imaginaries (Optional)

Figure 25-3 - Structure of NMRi 1D-spectrum.

Again, for consistency with the program description found in the supplied manuals, the file struc-
turewill be discussed in terms of blocks of length 642. The data begins at block number 4, and the
length of each 1D-spectrum will be

LENGTH = (SIZE)/64

for acomplex data set where LENGTH is given in blocks. For areal data set, this number will be
halved.

GAMMA - When creating NMRi files, GAMMA will initially write an empty header (512) prior
to any spectral data. After each 1D-spectrum is written, the header will be updated to reflect how
many lines of 1D data are present. That would be the variable SPECNUM shown in Figure 25-1.

1. The block length of 64 isintrinsic to thefile structure as utilized in the FORTRAN codefor file |/O supplied
with the NMRi programs.GAMMA uses C++ code to perform I/O withe NMRi making this conceptua divi-
sion nearly unnecessary.

2. Seethe previous footnote. This information is only useful in clarification of the manual description.

Copyright Scott A. Smith May 22, 1998

GAMMA NMRiFile 112
User Documentation Overview 7.1
7 NMRIiFile

7.1 Overview

The classNMRiFile provides I/O functions to read and write filesin NMRi Format. Thisclassis
constructed in analogy to the standard C++ class Filefor handling files on disk. As such, each NM-
RiFile accesses adisk file, either for reading or writing. Provisions are made for transferring the

datain an NMRiFileinto amatrix or from amatrix into an NMRiFile.

7.2 Available NMRIiFile Functions

NMRiFile - Create or open an NMRiFile

~NMRiFile - Close an NMRiFile

close - Close an NMRiFile

write - Write ablock to aNMRIiFile

read - Read a block from aNMRIiFile at a specified position

writeParameter - Write a parameter into the NMRiFile (PRIVATE FUNCTION)
readParameter - Retrieve a parameter from the NMRiFile

write_header - Write the entire NMRiFile header

read header - Retrieve the entire NMRiFile header

print_header - Send NMRIiFile header information to output stream

rows - Returns the number of rows (spectra) in the NMRi file
cols - Returns the number of cols (spectrasize) in the NMRi file
seek - Set the current position in an NMRIiFile

tell - Retrieve the current position in an NMRiFile

= - Read the NMRIFile header parametersinto ap_set

7.3 NMRIiFileFiguresand Tables

:NMRIiFile Internal Structure
NMRI File Structure

NMRi Header Structure-
NMRi Data Structure-

NMRi Data Structure-

Copyright Scott A, Smith

page 113

page 114
page 115
page 116
page 116
page 117
page 117
page 118
page 118
page 119
page 119
page 120

page 122
page 123
page 124
page 125
page 125

May 22, 1998

GAMMA NMRIiFile 113
User Documentation NMRIiFile Figures and Tables 7.3

7.4 Routines

74.1 NMRIiFile

Usage:

#include <NMRiFile.h>
void NMRi (const char* filename, io_mode m=io_readwrite, access_mode a=a_use);

Description:

Thefunction NMRiFileisused to either create anew NMRi compatiblefile or to open an existing file which
isin the standard NMRi format. Thefirst argument, filename, isthe NMRIi file name to be accessed. The sec-
ond argument, io_mode is exactly analogous to the valid arguments used to open afile. The possible input
values are: io_readonly - the file will be opened without write access, io_writeonly - the filewill be open for
writing only, io_readwrite - the file will be opened for both reading and writing (default). The last argument,
access_mode, is also analogousto access modes for files. The possibleinput values are: a_createonly - create
thefile, fail if fileexists; a_create - createthefile, recreateif file exists; a _useonly - open an existing file, fail
if it doesnot exist; a_use- open an existing file, createif it does not exist. The default values of the latter two
are usually correct but the NMRI file must then have both read and write privileges set for the individual at-
tempting to accessiit.

Return Value:

Nothing when producing aNMRi file.
Example:

#include <NMRiFile.n>

main ()
{
NMRiFile filel(“newfile.dat”); /I Create a new NMRIFile filel, external name newfile.dat
NMRiFile file2(*oldfile.dat”); /I Open an old NMRiFile file2, external name oldfile.dat
}
742 close

Usage:

#include <NMRiFile.h>

void NMRi (const char* flename, io_mode m=io_readwrite, access_mode a=a_use);
Description:

The function NMRiFileisused to either create anew NMRi compatiblefile or to open an existing file which

is in the standard NMRi format. The data is contained in the data block “BLK”. The file is specified by either
the name “filename” or by the file pointer “file”. The parameter “rc” indicates whether to write real or com-
plex(default) data. If rc is 0, only the real data will be output. If rc is negative, only the imaginary data is writ-

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 114
User Documentation NMRIiFile Figures and Tables 7.3

ten (asreals), and if rc>0 the complex dataiswritten.
Return Value:

Nothing when producing aNMRi file.
Example:

#include <gamma.hc>

main ()
{
block_1D BLK1(128); I/ Define a 1D-data block
BLK1 = Gaussian(128, 64, 42.46); /I Set 1D-block to Gaussian
NMRIi(fp, BLKB, 0);
}
fp.close(); I/ Close file NMRND.tst
}

Thelast NMRI file produced, NMRND.tst, was made by first opening afile, successively writing 1D spectra
to it, then closing the file. Since this program accessed NMRi files previously (during the creation of
NMR1D.tst and NMR2D.tst) thefirst spectrum wasindependently written outside the loop with the zero flag
set when calling NMRI. This sets the internal counter to zero, something unnecessary had NMRi files not
been previously created in the program.

74.3 write

Usage:

#include <NMRiFile.h>

void write (const matrix& mx);
void write (const block_1D& BLK);
void write (const block_2D& BLK);

Description:

The function write is used to write datafrom a GAMMA matrix (or block) into an NMRi compatiblefile.
Thereisonly one argument and it can be either amatrix, 1-dimensional data block, or 2-dimensional data
block.

Return Value:

Nothing the function isvoid. The NMRi file will be modified.

Example:
main ()
{
NMRiFile file1l(“oldfile.dat”); // Open an old NMRIiFile filel, external name oldfile.dat
mstrix mx; /I Declare a general matrix
block_1D BLK1,; // Declare a 1D data block
block 2D BLK2; /[Declare a 2D data block

Copyright Scott A, Smith May 22, 1998

GAMMA NMRiFile 115

User Documentation NMRIiFile Figures and Tables 7.3
filel.read(mx); // Read al the data pointsin oldfile.dat into matrix mx
filel.read(BLK?2); // Read all data pointsin oldfile.dat into 2D block BLK2
}

744 read

Usage:

#include <NMRiFile.h>

void read (matrix& mx);

void read (block_1D& BLK);

void read (block_2D& BLK);

void read (matrix& mx, int rows);
void read (block_1D& BLK, int rows);
void read (block_2D& BLK, int rows);

Description:

Thefunction read is used to read datafrom an NMRi compatiblefileinto aGAMMA matrix (or data block).
Only one argument in utilized in the first three funciton forms, either amatrix, 1-dimensional data block, or
2-dimensional data block. With this usage, the

Return Value:

Nothing the function isvoid. The NMRi file will not be modified.
Example:

#include <NMRiFile.n>

main ()
{
NMRiFile file1(“oldfile.dat”); /l Open an old NMRiFile filel, external name oldfile.dat
mstrix mx; /I Declare a general matrix
block_1D BLK1; // Declare a 1D data block
block_2D BLK2; // Declare a 2D data block
filel.read(mx); /l Read all the data points in oldfile.dat into matrix mx
filel.read(BLK2); I/l Read all data points in oldfile.dat into 2D block BLK2
}

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 116
User Documentation NMRIiFile Figures and Tables 7.3

745 writeParameter

Usage:

#include <NMRiFile.h>
void NMRiFile::writeParameter (int pos, mx, float par);
void NMRiFile::writeParameter (int pos, int par);

Description:
The function writeParameter is used to write parametersinto an NMRiFile. For thisfunction the value of the

argument pos indicates which parameter, relative to the beginning of thefile, isto be written. The value of
the parameter itself, par, can beinput as either a floating point number or an integer.

Return Value:

Nothing the function is void. The NMRi file will be modified by having the parameter specified altered.
Example:

#include <NMRiFile.h>
main ()
{
,a _create); // Open file NMRND.tst

7.4.6 readPar ameter

Usage:

#include <NMRiFile.h>
void NMRiFile::readParameter (int pos, mx, float& par);
void NMRiFile::readParameter (int pos, int& par);

Description:
The function readParameter is used to read parameters from an NMRiFile. For thisfunction the value of the
argument pos indicates which parameter, relative to the beginning of thefile, isto be written. The value of

the parameter, par, will be set and output as either a floating point number or an integer type depending on
the argument given.

Return Value:

Nothing the function is void. The value of input parameter will be set the NMRi parameter.
Example:

#include <NMRiFile.n>
main ()

{
NMRiFile file1l(“oldfile.dat”"); // Open an old NMRIiFile filel, external name oldfile.dat

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 117
User Documentation NMRIiFile Figures and Tables 7.3

cout << “No. of rows = filel.rows(); // Output the number of rows contained in the file

}

7.4.7 write _header

Usage:

#include <NMRiFile.h>
void NMRiFile::write_header();

Description:

The function write_header is used to write all 512 parametersinto an NMRIi file into afloating point array.
The NMRi filewill be accessed directly regardless of where the file pointer is. The file pointer will beimme-
diately after the header, at the start of the data.

Return Value:

This function returns a pointer to a floating point array.
Example:

#include <NMRiFile.h>

main ()
{
NMRiFile filel(“newfile.dat”); / Open an new NMRIFile filel, external name newfile.dat
float fdata[512] /I Declare a float array of 512 points
filel.write_header(fdata); /I Write all 512 parameters in fdata to filel's header
}

7.4.8 read_header

Usage:
#include <NMRiFile.h>
float* NMRiFile::read_header();
Description:
The function read_header isused to read all 512 parameters contained in an NMRi fileinto a floating point

array. The NMRIi file will be accessed directly regardless of where the file pointer is. The file pointer will be
immediately after the header, at the start of the data.

Return Value:

This function returns a pointer to afloating point array.

Example:

#include <NMRiFile.h>
main ()

{

Copyright Scott A, Smith May 22, 1998

GAMMA

NMRiFile 118

User Documentation NMRIiFile Figures and Tables 7.3

NMRiFile filel(“oldfile.dat”);
float* fdata
fdata = oldfile.read_header();

}
7.4.9 print_header

Usage:
#include <NMRiFile.h>

/l Open an old NMRiFile filel, external name oldfile.dat
// Declare a pointer to a float
/I Now fdata is an array filled with all header parameters

ostream& NMRIiFile::print_header(ostream& ostr, int level=1);

Description:

The function print_header is used to send the parameter information contained in an NMRi file header into
an output stream. The returned output stream is the stream given in the first argument, ostr, with the header
parameters added. The second argument, level, set the amount of parameters to include in the output. The
range of level =[1, 5] where 1 outputs only the essential parameters of the possible 512 values.

Return Value:

This function returns an output stream.

Example:

#include <NMRiFile.h>
main ()

{
NMRIiFile file1(“oldfile.dat”);

cout << filel.print_header(cout);

}
7410 rows

Usage:

#include <NMRiFile.h>
int NMRiFile::rows ();

Description:

// Open an old NMRIiFile filel, external name oldfile.dat
// Output the basic header parameters

The function rows is used to obtain the number of rows (or data blocks) the NMRi file contains.

Return Value:

An integer is returned.
Example:

#include <NMRiFile.h>
main ()

{

Copyright Scott A, Smith

May 22, 1998

GAMMA NMRiFile 119

User Documentation NMRIiFile Figures and Tables 7.3
NMRIiFile filel(“oldfile.dat™); /l Open an old NMRiFile filel, external name oldfile.dat
cout << “No. of rows =filel.rows(); // Output the number of rows contained in the file
}

7411 cols

Usage:

#include <NMRiFile.h>
int NMRiFile::cols ();

Description:

The function colsis used to obtain the number of points that each row (or data blocks) of the NMRi file con-
tains.

Return Value:

Aninteger is returned.
Example:

#include <NMRiFile.h>

main ()
{
NMRiFile file1(“oldfile.dat”); /I Open an old NMRIiFile filel, external name oldfile.dat
cout << “No. of columns = filel.cols(); // Output the number of columns contained in the file
}
7412 seek

Usage:
#include <NMRiFile.h>
void NMRiFile::seek (int pos, int seek_mode=0);

Description:
The function seek isused to set theinternal positioning in the NMRi file. The argument posisavaluefor the
position in rows (or data blocks). The second argument seek_mode indicates how posisimplemented. The
default value, seek_mode = 0, the file position is set at pos rows from thefile start. For the value seek_mode

=1 the file position is set +pos rows from the current position. For the value seek_mode =2 the file position
is set pos rows back from the end of thefile.

Return Value:

None, the function is void.
Example:

#include <NMRiFile.h>
main ()

Copyright Scott A, Smith May 22, 1998

GAMMA NMRiFile 120

User Documentation NMRIiFile Figures and Tables 7.3
{
NMRiFile file1l(“oldfile.dat”"); // Open an old NMRIiFile filel, external name oldfile.dat
filel.seek(b); I/l Skip to row 5 of the data in filel
filel.seek(2, 2); I/ Skip to the second row 5 from the end of the data in filel
filel.seek(1); /I Skip one row (now to last one)
}

74.13 tdl

Usage:

#include <NMRiFile.h>
int NMRiFile::tell ();

Description:

The function tell is used to obtain the current file position, in terms of rows (or blocks) of an NMRi file.
Return Value:

An integer is returned.
Example:

#include <NMRiFile.h>

main ()

{
NMRiFile file1l(“oldfile.dat”"); // Open an old NMRiFile filel, external name oldfile.dat

filel.seek(5); /I Skip to row 5 of the data in filel
filel.seek(2, 2); /I Skip to the second row 5 from the end of the data in filel
filel.seek(1); /I Skip one row (now to last one)

}
7414 =

Usage:

#include <NMRiFile.h>
int NMRiFile::tell ();

Description:

The function = is used to place all parameters contained inthe NMRi file header into a parameter set (class
p_set).

Return Value:

Void.
Example:

#include <NMRiFile.h>

Copyright Scott A, Smith May 22, 1998

GAMMA NMRiFile 121

User Documentation NMRIiFile Figures and Tables 7.3
main ()
{
NMRIiFile filel1(“oldfile.dat™); // Open an old NMRIiFile filel, external name oldfile.dat
filel.seek(b); // Skip to row 5 of the data in filel
filel.seek(2, 2); // Skip to the second row 5 from the end of the data in filel
filel.seek(1); /I Skip one row (now to last one)
}

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 122
User Documentation NMRIiFile Figures and Tables 7.3

7.5 ClassNMRIiFile Description

7.5.1 Introduction

Every datafile suitablefor usein the NMR data processing packagesfrom New Methods Research,
Inc.t (e.g. NMR1 and NMR2) has astandard internal format. Class NMRiFile was constructed in
order that users of GAMMA are able to efficiently manipulate such files.

75.2 NMRIFile Structure

Theinternal design of ClassNMRIiFileisquitesimple. It contains the quantities defined in the fol-
lowing table.

Table9: NMRIiFileInternal Sructure

Variable | Type Units Description Comments

fp File The NMRI file on disk Set in constructor

fsize int bytes Size of NMRI filein bytes

cols_ int points Number of columnsin thefile

row_ int points Number of rowsin thefile

pos int bytes Current position in file

fname String External NMRi file name Set in constructor

headersize | int parame- Size of NMRI file header Set Constant: 512
ters

par SIZE | int parame- File position of parameter SIZE | Set Constant: 99
ters

gar_SPEC int parame- File position of parameter SPECS | Set Constant: 219
ters

Most manipulationswithin NMRiFile are performed with the C++ class File. The other quantities
are defined mostly for convenience and/or because they are constants for all NMRi files.

1. NMR1 and NMR2 are a products of New Methods Research, Inc., 7 East Genesee Street, Syracuse, NY,
13210. Phone: (315) 424-0329, FAX: (315) 424-0356.GAMMA was tested on Sun systems running the Sun-
views operating system. NMR1 release 3.8 and NMR2 release 3.5 were the manuals referred to during the
programming.

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 123
User Documentation NMRIiFile Figures and Tables 7.3

75.3 NMRI File Structure

NMRI filesbegin with aheader which contains 512 parameters (headersi ze) describing the spectral

data. A 1D-spectrum of length “SIZE” is written immediately after the header, all real values fol-
lowed by all imaginary values. If the data is not complex, the imaginary values are absent from the
file. A two (or multi-) dimensional spectrum is successive 1D-spectra sharing the same header in-
formation, as depicted in the figure below.

NMRIi File Srructure

Header
Spectrum 1 SIZE Reals
Spectrum 1 SIZE Imaginaries

Spectrum 2 SIZE Reals
Spectrum 2 SIZE Imaginaries

Spectrum SPECNUM SIZE Reals
Spectrum SPECNUM SIZE Imaginaries

Figure 29-1 - Overall file structure of a NMRi file containing SPECNUM 1D complex spectra each
of length SIZE.

This file structure is described in the NMRi manuaB ONE NMR2, USER MANUAL, Release
3.5 on page 29.

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 124
User Documentation NMRIiFile Figures and Tables 7.3

754 NMRI Header Structure

A listing of the parameters contained in the header is given in the NMR1 USER MANUAL, Ap-
pendix F and also in the NMR2 USER MANUALR, Appendix A. The parameters discussed in the
two sources do not coincide exactly but the descriptions are suitable for GAMMA purposes. Of the
512 parameters contained in the header, few are useful outside of the NMRi programs. Those ab-
solutely required are given in the NMR2 manual (see the beginning section Data File Format) and
listed here. Note that here numbers range from 1 to 512 (not [0,511]).

« 100 - First dimension size. This is SIZE in Figure 29-1

« 101 - First dimension spectral width.

« 107 - Data type: 0.0=quadrature, 1.0=singulature, 2.0=singulature sorted.
« 220 - Second dimension size. This is SPECNUM in Figure 29-1

« 230 - Second dimension spectral width.

Other parameters which should be included, according to the NMR2 manual, are the following.

* 120 - Spectrometer Frequency (F2 Observe Frequency).
* 153 - First Dimension Units.

« 219 - Spectrometer Frequency (F1 Observe Frequency).
« 221 - First Dimension Transform State.

° 222 - Transpose State

* 223 - Second Dimensiton Transform State.

* 235 - Second Dimension Units.

For consistency with the program description found in the supplied manuals, the file structure will
be briefly discussed in terms of blocks, each block being of Ienétﬁ'Bds the header takes up 4

blocks.
NMRi Header Structure
0 1 2 3

Figure 29-2 - Header Structure of a NMRi file. The header is conceptually divided into 4 blocks, each
containing 64 parameters.

1. Theblock length of 64 isintrinsic to thefile structure as utilized in the FORTRAN code for file |/O supplied
with the NMRi programs. GAMMA uses C++ code to perform its 1/O regarding NMRi files rendering this
conceptual division unnecessary.

Copyright Scott A, Smith May 22, 1998

GAMMA NMRIiFile 125
User Documentation NMRIiFile Figures and Tables 7.3

755 NMRI Data Structure

The actual data startsimmediately after the header. In afile containing multiple spectra (i.e. a2D
spectrum) each spectrum must be of the same size and this size must be apower of 2 (64, 128, 256,
....). If the any spectrum does not meet thislatter requirement it will be padded with zeros until the
sizeisapower of 2. Furthermore, collectively the blocks must be either al real or all complex.

NMRi Data Sructure

SIZE Reals
SIZE Imaginaries (Optional)

Figure 29-3 - Structure of NMRi 1D-spectrum or block.

Again, for consistency with the program description found in the supplied manuals, the file struc-
ture will be discussed in terms of blocks of length 64%. The data begins at block number 4, and the
length of each 1D-spectrum will be

LENGTH = (SIZE)/ 64
for acomplex data set where LENGTH isgiven in blocks. For areal data set, this number will be
halved.
75.6 GAMMA Treatment of NMRI Files

When creating NMRi files, GAMMA will initially write an empty header (512) prior to any spec-
tral data. After each 1D-spectrum iswritten, the header will be updated to reflect how many lines
of 1D data are present. That would be the variable SPECNUM shown in Figure 29-1.

1. See the previous footnote. Thisinformation is only useful in clarification of the manual description.

Copyright Scott A, Smith May 22, 1998

	1 Introduction 6
	2 Gnuplot Output 7
	3 FrameMaker Output 24
	4 MATLAB I/O 66
	5 Felix I/O 73
	6 NMRi I/O 106
	7 NMRiFile 112
	1 Introduction 6
	2 Gnuplot Output 7
	2.3 Index of Figures & Tables 7
	2.4 Routines 8
	2.5 Routines for Interactive Plotting Using Gnuplot 19
	2.6 Additional Examples 20
	2.7 Additional Hints 23

	3 FrameMaker Output 24
	3.1 FrameMaker Overview 25
	3.2 Index of GAMMA’s FrameMaker Functions 26
	3.3 Index of Figures & Tables 26
	3.4 FrameMaker Functions 27
	3.5 Routines for Matrix Output in FM 54
	3.6 Mathematical Details & Code Specifics 58

	4 MATLAB I/O 66
	4.5 Routines 67
	4.6 Description 70

	5 Felix I/O 73
	5.5 Routines 75
	5.6 Description 92

	6 NMRi I/O 106
	6.1 Overview 106
	6.2 Available NMRi Functions 106
	6.3 Routines 106
	6.4 Description 110

	7 NMRiFile 112
	7.1 Overview 112
	7.2 Available NMRiFile Functions 112
	7.3 NMRiFile Figures and Tables 112
	7.4 Routines 113
	7.5 Class NMRiFile Description 122

	1 Introduction
	2 Gnuplot Output
	2.1 Overview
	2.2 Available Gnuplot Functions
	2.3 Index of Figures & Tables
	2.4 Routines
	2.4.1 GP_1D
	Gnuplot Funcion GP_1D Example
	Figure 4-1 - Example program result from use of the GAMMA function “Felix”.

	2.4.2 GP_1Dm
	Gnuplot Function GP_1Dm Example
	Figure 4-2 - Example program result from use of the GAMMA function “GP_1Dm”.

	2.4.3 GP_xy
	Gnuplot Function GP_xy Example
	Figure 4-3 - Example program result from use of the GAMMA function “GP_xy”.

	2.4.4 GP_contour
	Example:
	Gnuplot Function GP_contour Example
	Figure 4-4 - Example program result from use of the GAMMA function “GP_stack”.

	2.4.5 GP_stack
	Gnuplot Function GP_stack Example
	Figure 4-5 - Example program result from use of the GAMMA function “GP_stack”.

	2.5 Routines for Interactive Plotting Using Gnuplot
	2.5.1 GP_1Dplot

	2.6 Additional Examples
	2.6.1 Spherical Plots
	Gnuplot 3D Spherical Plot Example
	Figure 4-6 - Example program result illustrating production of 3D spherical plots.

	2.7 Additional Hints
	2.7.1 Gnuplot Contour Plots
	2.7.2 Gnuplot Stack Plots

	3 FrameMaker Output
	Sections In This Document
	3.1 FrameMaker Overview

	GAMMA & FrameMaker
	Figure 4-1 : GAMMA output in FrameMaker. You’re viewing a document produced with FrameMaker and t...

	3.2 Index of GAMMA’s FrameMaker Functions
	3.3 Index of Figures & Tables
	3.4 FrameMaker Functions
	3.4.1 FM_1D

	FM_1D Example Output
	Figure 4-2 - The two plots above were contained in the file FM.mif and imported directly to this ...

	3.4.2 FM_1Dm
	FM_1Dm Example Output
	Figure 4-3 - The two plots above were contained in the file FM.mif and imported directly to this ...

	3.4.3 FM_xyPlot
	XY Plot Example
	Figure 4-4 - The two plots above were contained in the file FM.mif and imported directly to this ...

	3.4.4 FM_histogram
	Histogram Example

	3.4.5 FM_scatter
	1. FM_scatter (const char* filename, row_vector &vx, int sides=0, double PGsize=0, double xsize=1...
	Size Vs. Symbol in Scatter Plots
	Figure 4-5 - Value of “size” vs. Symbol Output. These may also be set inside FrameMaker..
	2. FM_scatter (const char* filename, row_vector &vx, char a, double xsize=14, double ysize=14) - ...

	Examples:
	FM_scatter Example1 Output
	Figure 4-6 - The plot above was contained in the file FM.mif and imported directly to this docume...

	FM_scatter Example 2 Output
	Figure 4-7 This plot above was also produced into a file called FM.mif and imported directly to t...

	3.4.6 FM_contour
	Choosing Contour Levels
	
	Figure 4-8 - Depiction of the two basic parameters for picking contour levels.

	Multiple Contour Levels
	Figure 4-9 - Examples depicting function arguments vs. contour levels chosen..

	Example:
	FM_contour Example Output
	Figure 4-10 Contour plot of the 101x101 matrix which is a sin2(x) on one axis and a sinc(y) on th...

	3.4.7 FM_stack
	Stack Plot Perspective
	Figure 4-11 - How to set the skew or viewing angle in the FM stack plot function.

	Stack Plot Row Increments
	Figure 4-12 - The effect of the row increment arguemnt.
	Figure 4-13 - How xinc affects the skewing of the output stack plot.

	xinc, yinc, and Stack Plots
	Figure 4-14 - How xinc affects the skewing of the output stack plot.

	Graphical Manipulations of Stack Plots Within FrameMaker
	.
	Figure 4-15 - The two plots above were contained in the file FM.mif and imported directly to this...

	More Graphical Manipulations of Stack Plots
	Figure 4-16 - The two plots above were contained in the file FM.mif and imported directly to this...

	FM_stack Example Output
	Figure 4-17 This example generates a 101x101 matrix which is a sinc function along both axes. The...

	3.4.8 FM_sphere
	1. FM_sphere (const char* filename, int type, double alpha, double beta, double gamma, double rad...
	2. FM_sphere (const char* filename, double coord_vec, int type, double alpha, double beta, double...
	3. FM_sphere (const char* filename, double coord_vec, double coord_vec, int type, double alpha, d...
	Figure 4-18 - Depiction of (simple) 3D Euler Rotation and subsequent projection on plot axes.
	Euler Rotations About a and b
	Figure 4-19 - Examples of rotations using only the 1st two Euler Angles.

	Euler Rotations About b and g
	Figure 4-20 Again, these axes were generated with the program listed as Example 1. The axis orien...

	Example 1:
	FM_sphere Example 1 Output
	Figure 4-21 This example program runs interactively and prompts the user for information concerni...

	Example 2:
	FM_sphere Example 2 Output
	Figure 4-22 This example demonstrates the use of the function FM_sphere for plotting a coordinate...

	Example 3:
	FM_sphere Example 3 Output
	Figure 4-23 - The two plots above were contained in the file FM.mif and imported directly to this...

	3.5 Routines for Matrix Output in FM
	3.5.1 FM_Matrix
	Figure 4-24 - The two plots above were contained in the file FM.mif and imported directly to this...

	3.5.2 FM_Mat_Plot
	Figure 4-25 - The result of the example program read into this document.

	3.6 Mathematical Details & Code Specifics
	3.6.1 FrameMaker Contour Plots
	Contours
	
	Figure 4-26 - The two plots above were contained in the file FM.mif and imported directly to this...

	Multiple Contours
	Figure 4-27 - The two plots above were contained in the file FM.mif and imported directly to this...

	Contouring Concept
	Figure 4-28 - How a matrix is searched for contours in the GAMMA FM_contour function.
	Table 1: Eight (23) Triangle Based Contouring Situations Possible

	Contouring Theme
	Figure 4-29 - Possible interasections between 3 points and a contour plane.

	Contouring Situation
	
	Figure 4-30 - First type of intersection with a contour plane.

	Contouring Situation
	
	Figure 4-31 - Second type of intersection with a contour plane.

	4 MATLAB I/O
	4.1 Overview
	4.2 Available MATLAB Functions
	4.3 MATLAB Discussion
	4.4 MATLAB Figures & Tables
	4.5 Routines
	4.5.1 MATLAB
	1. MATLAB (const char* filename, const char* dataname, matrix &mx, int rc=1) - When MATLAB is inv...
	2. MATLAB (File &file, const char* dataname, matrix &mx, int rc=1) - When MATLAB is invoked with ...
	3. MATLAB (const char* filename, const char* dataname) - When MATLAB is invoked with this argumen...

	MATLAB Example Plot 1
	MATLAB Example Plot 2
	4.6 Description
	4.6.1 MATLAB “MAT” File Structure
	MATLAB MAT File Structure
	Figure 25-1 - Overall file structure of a MATLAB MAT file containing multiple matrices.
	4.6.2 MATLAB “MAT” File Header Structure

	MATLAB MAT Header Structure
	Figure 25-2 - Header Structure of a MATLAB MAT file.
	4.6.3 MATLAB “MAT” File Data Structure

	MATLAB MAT Matrix Data Structure
	Figure 25-3 - Matrix data structure of a MATLAB MAT file.

	5 Felix I/O
	5.1 Overview
	5.2 Available Felix Functions
	5.3 Discussion of Felix
	5.4 Felix Figures & Tables
	5.5 Routines
	5.5.1 Felix
	1. Felix (const char* filename, block_1D &BLK, int rc=1) - When Felix is invoked with this argume...
	2. Felix (const char* filename, block_2D &BLK, int rc=1) - This function is similar to the use ab...
	3. Felix (File &file, block_1D &BLK, int rc=1) - When Felix is invoked with this argument list it...

	Example 1:
	Felix 1D Spectrum Output
	Figure 4-1 - Example program result from use of the GAMMA function “Felix”.

	Example 2:
	Felix 2D Spectrum Serial Output
	Figure 4-2 - Example program result from use of the GAMMA function “Felix”.

	Example 3:
	Felix 1D Spectrum Output
	Figure 4-3 - Example program result from use of the GAMMA function “Felix” in a loop.

	5.5.2 Felix_1D
	Felix 1D Example Output
	Figure 4-4 - Example program result from use of the GAMMA function “Felix” to read a file.
	5.5.3 Felix_2D

	Felix 2D Example Output
	Figure 4-5 - Example program result from use of the GAMMA function “Felix_2D”.

	5.5.4 Felix_header
	5.5.5 Felix_d_cat
	Felix Concatonation Example Output
	Figure 4-6 - Example program result from use of the GAMMA function “Felix_2D”.

	5.5.6 Felix_mat
	1. Felix_mat (const char* filename, block_2D &BLK, int rc=1) - When Felix is invoked with this ar...
	2. Felix (File &fp, block_1D &BLK, int rc=1) - When Felix is invoked with this argument list it w...
	5.5.7 Felix_mat_1D
	5.5.8 Felix_mat_header

	5.6 Description
	5.6.1 Felix “.dat” File Structure
	Felix .dat File Structure
	Figure 4-7 - File Structure of an Felix .dat file. There are SIZE complex points per each 1D spec...

	Felix .dat File Header Structure
	Figure 4-8 - Header Structure of an Felix .dat file. The first 16 complex points are used to stor...

	5.6.2 Felix “.dat” Data Structure
	Felix .dat File Header Structure
	Figure 4-9 - Data Structure of an Felix .dat file. There are SIZE complex points or 2*SIZE indivi...
	5.6.3 Felix “.mat” File Structure

	Felix .mat File Structure

	5.6.4 Felix “.mat” File Header
	Felix .mat File Header Structure
	Figure 4-10 - Header Structure of an Felix .mat file. Note that the index in FORTRAN (the languag...
	Table 2: Felix .mat File Header Scalar Parameters
	Table 3: Felix Matrices versus Felix Header Scalars
	Table 4: Felix .mat File Header Vector Parameters
	Table 5: Felix Matrices versus Felix Header Scalars
	Table 6: Felix .mat File Other Parameters

	5.6.5 Felix “.mat” Data Structure
	Typical Matrices versus Felix .mat 2D Matrix
	General Felix .mat File Structure
	Felix .mat File Structure for 512x512 Real Matrix
	Figure 4-11 - Header Structure of an Felix .mat file. Note that the index in FORTRAN (the languag...
	Table 7: Felix Matrices versus Felix Header Scalars
	Table 8: Felix Matrices versus Felix Header Scalars

	6 NMRi I/O
	6.1 Overview
	6.2 Available NMRi Functions
	6.3 Routines
	6.3.1 NMRi
	1. NMRi (const char* filename, block_1D &BLK, int rc=1) - When NMRi is invoked with this argument...
	2. NMRi (const char* filename, block_2D &BLK, int rc=1) - This function is similar to the use abo...
	3. NMRi (File &file, block_1D &BLK, int rc=1) - When NMRi is invoked with this argument list it w...

	6.3.2 NMRi_1D
	6.3.3 NMRi_2D
	6.3.4 NMRi_header

	6.4 Description
	NMRi File Structure
	Figure 25-1 - Overall file structure of a NMRi file containing SPECNUM 1D complex spectra each of...

	NMRi Header Structure
	Figure 25-2 - Header Structure of a NMRi file. The header is conceptually divided into 4 blocks, ...

	NMRi Data Structure
	Figure 25-3 - Structure of NMRi 1D-spectrum.

	7 NMRiFile
	7.1 Overview
	7.2 Available NMRiFile Functions
	7.3 NMRiFile Figures and Tables
	7.4 Routines
	7.4.1 NMRiFile
	Usage:
	Description:
	Return Value:
	Example:
	7.4.2 close

	Usage:
	Description:
	Return Value:
	Example:
	7.4.3 write

	Usage:
	Description:
	Return Value:
	Example:
	7.4.4 read

	Usage:
	Description:
	Return Value:
	Example:
	7.4.5 writeParameter

	Usage:
	Description:
	Return Value:
	Example:
	7.4.6 readParameter

	Usage:
	Description:
	Return Value:
	Example:
	7.4.7 write_header

	Usage:
	Description:
	Return Value:
	Example:
	7.4.8 read_header

	Usage:
	Description:
	Return Value:
	Example:
	7.4.9 print_header

	Usage:
	Description:
	Return Value:
	Example:
	7.4.10 rows

	Usage:
	Description:
	Return Value:
	Example:
	7.4.11 cols

	Usage:
	Description:
	Return Value:
	Example:
	7.4.12 seek

	Usage:
	Description:
	Return Value:
	Example:
	7.4.13 tell

	Usage:
	Description:
	Return Value:
	Example:
	7.4.14 =

	Usage:
	Description:
	Return Value:
	Example:

	7.5 Class NMRiFile Description
	Table 9 : NMRiFile Internal Structure
	7.5.3 NMRi File Structure
	NMRi File Structure
	Figure 29-1 - Overall file structure of a NMRi file containing SPECNUM 1D complex spectra each of...

	7.5.4 NMRi Header Structure
	NMRi Header Structure
	Figure 29-2 - Header Structure of a NMRi file. The header is conceptually divided into 4 blocks, ...

	7.5.5 NMRi Data Structure
	NMRi Data Structure
	Figure 29-3 - Structure of NMRi 1D-spectrum or block.

